論文の概要: Can GPT-4 Help Detect Quit Vaping Intentions? An Exploration of Automatic Data Annotation Approach
- arxiv url: http://arxiv.org/abs/2407.00167v1
- Date: Fri, 28 Jun 2024 18:06:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:10:29.053662
- Title: Can GPT-4 Help Detect Quit Vaping Intentions? An Exploration of Automatic Data Annotation Approach
- Title(参考訳): GPT-4はクイットベッピングの意図を検出するのに役立つか? : 自動データアノテーションの探索
- Authors: Sai Krishna Revanth Vuruma, Dezhi Wu, Saborny Sen Gupta, Lucas Aust, Valerie Lookingbill, Wyatt Bellamy, Yang Ren, Erin Kasson, Li-Shiun Chen, Patricia Cavazos-Rehg, Dian Hu, Ming Huang,
- Abstract要約: 近年、アメリカ合衆国は電子タバコや電子タバコの普及が著しく進んでいるのを目撃している。
本研究では、Reddit上の1つの電子タバコサブコミュニティからサンプルデータセットを抽出し、ユーザの電子タバコの停止意図を分析した。
我々は, GPT-4にタスクを説明するために, 詳細レベルが異なる8つのプロンプトを開発した。
- 参考スコア(独自算出の注目度): 1.134802802099004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the United States has witnessed a significant surge in the popularity of vaping or e-cigarette use, leading to a notable rise in cases of e-cigarette and vaping use-associated lung injury (EVALI) that caused hospitalizations and fatalities during the EVALI outbreak in 2019, highlighting the urgency to comprehend vaping behaviors and develop effective strategies for cessation. Due to the ubiquity of social media platforms, over 4.7 billion users worldwide use them for connectivity, communications, news, and entertainment with a significant portion of the discourse related to health, thereby establishing social media data as an invaluable organic data resource for public health research. In this study, we extracted a sample dataset from one vaping sub-community on Reddit to analyze users' quit-vaping intentions. Leveraging OpenAI's latest large language model GPT-4 for sentence-level quit vaping intention detection, this study compares the outcomes of this model against layman and clinical expert annotations. Using different prompting strategies such as zero-shot, one-shot, few-shot and chain-of-thought prompting, we developed 8 prompts with varying levels of detail to explain the task to GPT-4 and also evaluated the performance of the strategies against each other. These preliminary findings emphasize the potential of GPT-4 in social media data analysis, especially in identifying users' subtle intentions that may elude human detection.
- Abstract(参考訳): 近年、アメリカ合衆国では電子タバコや電子タバコの普及が著しく増加しており、2019年のEVALIの流行で入院や致命傷を負った電子タバコや電子タバコによる肺障害(EVALI)が顕著に増加している。
ソーシャルメディアプラットフォームの普及により、世界中で470億人以上のユーザーがインターネット接続、コミュニケーション、ニュース、エンターテイメントに利用しており、公衆衛生研究のための貴重な有機データ資源としてソーシャルメディアデータを確立している。
本研究では、Reddit上の1つの電子タバコサブコミュニティからサンプルデータセットを抽出し、ユーザの電子タバコの停止意図を分析した。
本研究は,OpenAI の最新大規模言語モデル GPT-4 を用いて,文章レベルの禁煙意図の検出を行い,本モデルの結果とレイマンおよび臨床専門家のアノテーションとの比較を行った。
ゼロショット,ワンショット,少数ショット,チェーン・オブ・ワンドプロンプトなどの異なるプロンプトを駆使して,GPT-4にタスクを説明するために,様々なレベルの詳細を持つ8つのプロンプトを開発した。
これらの予備的な知見は、ソーシャルメディアデータ分析におけるGPT-4の可能性、特に人間の検出を損なう可能性のあるユーザの微妙な意図を特定することを強調する。
関連論文リスト
- Public Health Advocacy Dataset: A Dataset of Tobacco Usage Videos from Social Media [6.9114339814002745]
Public Health Advocacy データセット (PHAD) は、TikTok や YouTube などのソーシャルメディアプラットフォームから提供されるタバコ製品に関連する5,730本のビデオの包括的なコレクションである。
このデータセットは430万フレームを含み、ユーザエンゲージメントメトリクス、ビデオ記述、検索キーワードなどの詳細なメタデータを含んでいる。
論文 参考訳(メタデータ) (2024-11-12T18:12:06Z) - Utilizing Large Language Models to Identify Reddit Users Considering Vaping Cessation for Digital Interventions [1.134802802099004]
米国や他の国で電子タバコの使用や電子タバコの使用の人気が高まり、電子タバコが流行し、電子タバコの使用に伴う肺障害が発生している。
本研究では、Reddit上の1つの電子タバコサブコミュニティからサンプルデータセットを抽出し、ユーザの電子タバコの停止意図を分析した。
本研究は,最新のGPT-4と従来のBERTベースの言語モデルを含む大規模言語モデルを用いて,人間のアノテーションに対するこれらのモデルの結果を比較した。
論文 参考訳(メタデータ) (2024-04-25T15:45:58Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
薬物と薬物の相互作用は同時投与の有効性を損なう可能性がある。
従来のDDI予測の計算手法では、知識不足のため、新しい薬物の相互作用を捉えることができない可能性がある。
言語モデルに基づくDDI予測器と強化学習(RL)に基づく情報セレクタを用いたテキストDDIを提案する。
論文 参考訳(メタデータ) (2024-03-13T09:42:46Z) - Hierarchical Multi-Label Classification of Online Vaccine Concerns [8.271202196208]
ワクチンの懸念は進化を続けるターゲットであり、新型コロナウイルス(COVID-19)のパンデミックで見られるように急速に変化する可能性がある。
本稿では,大規模言語モデル(LLM)を用いて,高価なトレーニングデータセットを必要とせず,ゼロショット設定でワクチンの関心事を検出するタスクについて検討する。
論文 参考訳(メタデータ) (2024-02-01T20:56:07Z) - Leveraging Large Language Models and Weak Supervision for Social Media
data annotation: an evaluation using COVID-19 self-reported vaccination
tweets [1.9988653168573556]
ソーシャルメディアプラットフォームは、ワクチンに関する話題を議論するメディアとして人気を博している。
本研究では,新型コロナウイルス関連ツイートを識別するために,大規模言語モデル(GPT-4,弱監督)の使用状況を評価する。
論文 参考訳(メタデータ) (2023-09-12T18:18:23Z) - DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4 [80.36535668574804]
我々は新しいGPT4対応脱識別フレームワーク(DeID-GPT)を開発した。
開発したDeID-GPTは,非構造化医用テキストからの個人情報のマスキングにおいて,高い精度と信頼性を示した。
本研究は,ChatGPTおよびGPT-4を医療用テキストデータ処理および非識別に利用した最初期の1つである。
論文 参考訳(メタデータ) (2023-03-20T11:34:37Z) - Am I No Good? Towards Detecting Perceived Burdensomeness and Thwarted
Belongingness from Suicide Notes [51.378225388679425]
本稿では,自殺ノートから知覚的バーデンサムネス(PB)とThwarted Belongingness(TB)を検出する新しい課題に対処するエンドツーエンドマルチタスクシステムを提案する。
また、ベンチマークCEASE-v2.0データセットに基づいて、手動で翻訳したコード混合自殺メモコーパス、CoMCEASE-v2.0を導入する。
自殺ノートの時間方向と感情情報を利用して全体のパフォーマンスを向上する。
論文 参考訳(メタデータ) (2022-05-20T06:31:08Z) - AI-based Approach for Safety Signals Detection from Social Networks:
Application to the Levothyrox Scandal in 2017 on Doctissimo Forum [1.4502611532302039]
本稿では,患者のレビューから医薬安全信号を検出するためのAIベースのアプローチを提案する。
フランスにおけるLevothyroxの症例に着目し,薬式変更後にメディアから大きな注目を集めた。
本研究は, 言葉とn-grams頻度, 意味的類似性, 副薬物反応の言及, 感情分析など, 患者のレビューから抽出したNLPに基づく指標について検討した。
論文 参考訳(メタデータ) (2022-02-01T10:17:32Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。