Medical Knowledge Integration into Reinforcement Learning Algorithms for Dynamic Treatment Regimes
- URL: http://arxiv.org/abs/2407.00364v1
- Date: Sat, 29 Jun 2024 08:23:01 GMT
- Title: Medical Knowledge Integration into Reinforcement Learning Algorithms for Dynamic Treatment Regimes
- Authors: Sophia Yazzourh, Nicolas Savy, Philippe Saint-Pierre, Michael R. Kosorok,
- Abstract summary: Dynamic Treatment Regimes (DTR) adapt treatment strategies based on decision rules learned from clinical data to enhance therapeutic effectiveness.
Reinforcement Learning (RL) algorithms allow to determine these decision rules conditioned by individual patient data and their medical history.
The integration of medical expertise into these models makes possible to increase confidence in treatment recommendations and facilitate the adoption of this approach by healthcare professionals and patients.
- Score: 1.4088763981769077
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The goal of precision medicine is to provide individualized treatment at each stage of chronic diseases, a concept formalized by Dynamic Treatment Regimes (DTR). These regimes adapt treatment strategies based on decision rules learned from clinical data to enhance therapeutic effectiveness. Reinforcement Learning (RL) algorithms allow to determine these decision rules conditioned by individual patient data and their medical history. The integration of medical expertise into these models makes possible to increase confidence in treatment recommendations and facilitate the adoption of this approach by healthcare professionals and patients. In this work, we examine the mathematical foundations of RL, contextualize its application in the field of DTR, and present an overview of methods to improve its effectiveness by integrating medical expertise.
Related papers
- Development and Validation of Heparin Dosing Policies Using an Offline Reinforcement Learning Algorithm [0.7519918949973486]
This study proposes a reinforcement learning-based personalized optimal heparin dosing policy.
A batch-constrained policy was implemented to minimize out-of-distribution errors in an offline RL environment.
This research enhances heparin administration practices and establishes a precedent for the development of sophisticated decision-support tools in medicine.
arXiv Detail & Related papers (2024-09-24T05:20:38Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
We operationalize a safe and interpretable framework to identify optimal treatment regimes.
Our findings support personalized treatment strategies based on a patient's medical history and pharmacological features.
arXiv Detail & Related papers (2023-10-23T19:59:10Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
Strategy training is a rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke.
Standardized fidelity assessment is used to measure adherence to treatment principles.
We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task.
arXiv Detail & Related papers (2022-09-14T15:33:30Z) - Precision Radiotherapy via Information Integration of Expert Human
Knowledge and AI Recommendation to Optimize Clinical Decision Making [4.843028858507964]
This paper lays out a systematic method to integrate expert human knowledge with AI recommendations for optimizing clinical decision making.
The proposed method is demonstrated in a comprehensive dataset where patient-specific information and treatment outcomes are prospectively collected during radiotherapy of $67$ non-small cell lung cancer patients.
arXiv Detail & Related papers (2022-02-09T16:56:22Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Health improvement framework for planning actionable treatment process
using surrogate Bayesian model [1.2468700211588881]
This study proposes a novel framework to plan treatment processes in a data-driven manner.
A key point of the framework is the evaluation of the "actionability" for personal health improvements.
arXiv Detail & Related papers (2020-10-30T06:02:49Z) - Review of Machine Learning Algorithms for Brain Stroke Diagnosis and
Prognosis by EEG Analysis [50.591267188664666]
Strokes are the leading cause of adult disability in the United States.
Brain-Computer Interfaces (BCIs) help the patient either restore neurologic pathways or effectively communicate with an electronic prosthetic.
The various machine learning techniques and algorithms that are addressed and combined with BCIs technology show that the use of BCIs for stroke treatment is a promising and rapidly expanding field.
arXiv Detail & Related papers (2020-08-06T19:50:29Z) - Learning Individualized Treatment Rules with Estimated Translated
Inverse Propensity Score [29.606141542532356]
In this paper, we focus on learning individualized treatment rules (ITRs) to derive a treatment policy.
In our framework, we cast ITRs learning as a contextual bandit problem and minimize the expected risk of the treatment policy.
As a long-term goal, our derived policy might eventually lead to better clinical guidelines for the administration of IV and VP.
arXiv Detail & Related papers (2020-07-02T13:13:56Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.