Addressing Overprescribing Challenges: Fine-Tuning Large Language Models for Medication Recommendation Tasks
- URL: http://arxiv.org/abs/2503.03687v1
- Date: Wed, 05 Mar 2025 17:28:16 GMT
- Title: Addressing Overprescribing Challenges: Fine-Tuning Large Language Models for Medication Recommendation Tasks
- Authors: Zihao Zhao, Chenxiao Fan, Chongming Gao, Fuli Feng, Xiangnan He,
- Abstract summary: Medication recommendation systems have garnered attention within healthcare for their potential to deliver personalized and efficacious drug combinations based on patient's clinical data.<n>Existing methodologies encounter challenges in adapting to diverse Electronic Health Records (EHR) systems.<n>We propose Language-Assisted Medication Recommendation (LAMO), which employs a parameter-efficient fine-tuning approach to tailor open-source LLMs for optimal performance in medication recommendation scenarios.
- Score: 46.95099594570405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medication recommendation systems have garnered attention within healthcare for their potential to deliver personalized and efficacious drug combinations based on patient's clinical data. However, existing methodologies encounter challenges in adapting to diverse Electronic Health Records (EHR) systems and effectively utilizing unstructured data, resulting in limited generalization capabilities and suboptimal performance. Recently, interest is growing in harnessing Large Language Models (LLMs) in the medical domain to support healthcare professionals and enhance patient care. Despite the emergence of medical LLMs and their promising results in tasks like medical question answering, their practical applicability in clinical settings, particularly in medication recommendation, often remains underexplored. In this study, we evaluate both general-purpose and medical-specific LLMs for medication recommendation tasks. Our findings reveal that LLMs frequently encounter the challenge of overprescribing, leading to heightened clinical risks and diminished medication recommendation accuracy. To address this issue, we propose Language-Assisted Medication Recommendation (LAMO), which employs a parameter-efficient fine-tuning approach to tailor open-source LLMs for optimal performance in medication recommendation scenarios. LAMO leverages the wealth of clinical information within clinical notes, a resource often underutilized in traditional methodologies. As a result of our approach, LAMO outperforms previous state-of-the-art methods by over 10% in internal validation accuracy. Furthermore, temporal and external validations demonstrate LAMO's robust generalization capabilities across various temporal and hospital contexts. Additionally, an out-of-distribution medication recommendation experiment demonstrates LAMO's remarkable accuracy even with medications outside the training data.
Related papers
- Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Natural Language-Assisted Multi-modal Medication Recommendation [97.07805345563348]
We introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR)<n>The NLA-MMR is a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly.<n>In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications.
arXiv Detail & Related papers (2025-01-13T09:51:50Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
We introduce MEDIC, a framework assessing Large Language Models (LLMs) across five critical dimensions of clinical competence.
We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks.
Results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths.
arXiv Detail & Related papers (2024-09-11T14:44:51Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)<n>Our research aims to transform existing medication recommendation methodologies using LLMs.<n>To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - LLMs Accelerate Annotation for Medical Information Extraction [7.743388571513413]
We propose an approach that combines Large Language Models (LLMs) with human expertise to create an efficient method for generating ground truth labels for medical text annotation.
We rigorously evaluate our method on a medical information extraction task, demonstrating that our approach not only substantially cuts down on human intervention but also maintains high accuracy.
arXiv Detail & Related papers (2023-12-04T19:26:13Z) - Aligning Large Language Models for Clinical Tasks [0.0]
Large Language Models (LLMs) have demonstrated remarkable adaptability, showcasing their capacity to excel in tasks for which they were not explicitly trained.
We propose an alignment strategy for medical question-answering, known as 'expand-guess-refine'
A preliminary analysis of this method demonstrated outstanding performance, achieving a score of 70.63% on a subset of questions sourced from the USMLE dataset.
arXiv Detail & Related papers (2023-09-06T10:20:06Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.