AI-powered multimodal modeling of personalized hemodynamics in aortic stenosis
- URL: http://arxiv.org/abs/2407.00535v1
- Date: Sat, 29 Jun 2024 21:49:45 GMT
- Title: AI-powered multimodal modeling of personalized hemodynamics in aortic stenosis
- Authors: Caglar Ozturk, Daniel H. Pak, Luca Rosalia, Debkalpa Goswami, Mary E. Robakowski, Raymond McKay, Christopher T. Nguyen, James S. Duncan, Ellen T. Roche,
- Abstract summary: Aortic stenosis is the most common valvular heart disease in developed countries.
High-fidelity preclinical models can improve AS management by enabling therapeutic innovation, early diagnosis, and tailored treatment planning.
Here, we propose an AI-powered computational framework for accelerated and democratized patient-specific modeling of AS hemodynamics from computed tomography.
- Score: 3.9933028169938605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aortic stenosis (AS) is the most common valvular heart disease in developed countries. High-fidelity preclinical models can improve AS management by enabling therapeutic innovation, early diagnosis, and tailored treatment planning. However, their use is currently limited by complex workflows necessitating lengthy expert-driven manual operations. Here, we propose an AI-powered computational framework for accelerated and democratized patient-specific modeling of AS hemodynamics from computed tomography. First, we demonstrate that our automated meshing algorithms can generate task-ready geometries for both computational and benchtop simulations with higher accuracy and 100 times faster than existing approaches. Then, we show that our approach can be integrated with fluid-structure interaction and soft robotics models to accurately recapitulate a broad spectrum of clinical hemodynamic measurements of diverse AS patients. The efficiency and reliability of these algorithms make them an ideal complementary tool for personalized high-fidelity modeling of AS biomechanics, hemodynamics, and treatment planning.
Related papers
- HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment [0.46435896353765527]
We introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks ( SBINNs)
The proposed method, Hyper SBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials.
arXiv Detail & Related papers (2024-08-26T13:40:33Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
arXiv Detail & Related papers (2024-04-12T22:05:01Z) - Improved Genetic Algorithm Based on Greedy and Simulated Annealing Ideas for Vascular Robot Ordering Strategy [7.51372615162241]
This study presents a comprehensive approach for optimizing the acquisition, utilization, and maintenance of ABLVR vascular robots in healthcare settings.
Considering the dynamic healthcare environment, our approach includes a robust resource allocation model for robotic vessels and operators.
We incorporate the unique requirements of the adaptive learning process for operators and the maintenance needs of robotic components.
arXiv Detail & Related papers (2024-03-28T15:14:03Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE [0.0]
We propose the use of Tumor Dynamic Neural-ODE as a pharmacology-informed neural network.
We show that TDNODE overcomes a key limitation of existing models in its ability to make unbiased predictions from truncated data.
We show that the generated metrics can be used to predict patients' overall survival (OS) with high accuracy.
arXiv Detail & Related papers (2023-08-02T18:08:27Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep
Learning Model [0.0]
We present an architecture that is tailored to predict high-resolution (spatial and temporal) velocity fields for complex synthetic vascular geometries.
Compared to CFD simulations, the velocity field can be estimated with a mean absolute error of 0.024 m/s, whereas the run time reduces from several hours on a high-performance cluster to a few seconds on a consumer graphical processing unit.
arXiv Detail & Related papers (2023-02-13T17:56:00Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.