Full-field surrogate modeling of cardiac function encoding geometric variability
- URL: http://arxiv.org/abs/2504.20479v1
- Date: Tue, 29 Apr 2025 07:22:06 GMT
- Title: Full-field surrogate modeling of cardiac function encoding geometric variability
- Authors: Elena Martinez, Beatrice Moscoloni, Matteo Salvador, Fanwei Kong, Mathias Peirlinck, Alison Lesley Marsden,
- Abstract summary: We propose a novel computational pipeline to embed cardiac anatomies into full-field surrogate models.<n>We use Branched Latent Neural Maps (BLNMs) as an effective scientific machine learning method to encode activation maps extracted from physics-based numerical simulations into a neural network.<n>Our surrogate model demonstrates robustness and great generalization across the complex original patient cohort, achieving an average a mean squared error of 0.0034.
- Score: 1.3643562541556224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining physics-based modeling with data-driven methods is critical to enabling the translation of computational methods to clinical use in cardiology. The use of rigorous differential equations combined with machine learning tools allows for model personalization with uncertainty quantification in time frames compatible with clinical practice. However, accurate and efficient surrogate models of cardiac function, built from physics-based numerical simulation, are still mostly geometry-specific and require retraining for different patients and pathological conditions. We propose a novel computational pipeline to embed cardiac anatomies into full-field surrogate models. We generate a dataset of electrophysiology simulations using a complex multi-scale mathematical model coupling partial and ordinary differential equations. We adopt Branched Latent Neural Maps (BLNMs) as an effective scientific machine learning method to encode activation maps extracted from physics-based numerical simulations into a neural network. Leveraging large deformation diffeomorphic metric mappings, we build a biventricular anatomical atlas and parametrize the anatomical variability of a small and challenging cohort of 13 pediatric patients affected by Tetralogy of Fallot. We propose a novel statistical shape modeling based z-score sampling approach to generate a new synthetic cohort of 52 biventricular geometries that are compatible with the original geometrical variability. This synthetic cohort acts as the training set for BLNMs. Our surrogate model demonstrates robustness and great generalization across the complex original patient cohort, achieving an average adimensional mean squared error of 0.0034. The Python implementation of our BLNM model is publicly available under MIT License at https://github.com/StanfordCBCL/BLNM.
Related papers
- A Hybrid CNN-Transformer Model for Heart Disease Prediction Using Life History Data [4.043923997825091]
This study proposes a hybrid model of a convolutional neural network (CNN) and a Transformer to predict and diagnose heart disease.
Based on CNN's strength in detecting local features and the Transformer's high capacity in sensing global relations, the model is able to successfully detect risk factors of heart disease.
arXiv Detail & Related papers (2025-03-03T23:12:55Z) - Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning [0.0]
We present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling.<n>This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization.<n>The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain.
arXiv Detail & Related papers (2024-11-10T12:40:33Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
A hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated.
The proposed model benefits from the physics-based knowledge contained in the models used in the full-order micromodel by embedding them in a neural network.
arXiv Detail & Related papers (2024-04-05T12:40:03Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Data-driven reduced-order modelling for blood flow simulations with
geometry-informed snapshots [0.0]
A data-driven surrogate model is proposed for the efficient prediction of blood flow simulations on similar but distinct domains.
A non-intrusive reduced-order model for geometrical parameters is constructed using proper decomposition.
A radial basis function interpolator is trained for predicting the reduced coefficients of the reduced-order model.
arXiv Detail & Related papers (2023-02-21T21:18:17Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Deep learning-based surrogate model for 3-D patient-specific
computational fluid dynamics [6.905238157628892]
It is notoriously challenging to parameterize the input space of arbitrarily complex 3-D geometries.
We propose a novel deep learning surrogate modeling solution to address these challenges and enable rapid hemodynamic predictions.
arXiv Detail & Related papers (2022-04-11T17:34:51Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.