Unveiling Glitches: A Deep Dive into Image Encoding Bugs within CLIP
- URL: http://arxiv.org/abs/2407.00592v1
- Date: Sun, 30 Jun 2024 05:23:11 GMT
- Title: Unveiling Glitches: A Deep Dive into Image Encoding Bugs within CLIP
- Authors: Ayush Ranjan, Daniel Wen, Karthik Bhat,
- Abstract summary: We focus on CLIP, a model renowned for its integration of vision and language processing.
Our objective is to uncover recurring problems and blind spots in CLIP's image comprehension.
We reveal significant discrepancies in CLIP's interpretation of images compared to human perception.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the limitations and weaknesses of state-of-the-art models in artificial intelligence is crucial for their improvement and responsible application. In this research, we focus on CLIP, a model renowned for its integration of vision and language processing. Our objective is to uncover recurring problems and blind spots in CLIP's image comprehension. By delving into both the commonalities and disparities between CLIP and human image understanding, we augment our comprehension of these models' capabilities. Through our analysis, we reveal significant discrepancies in CLIP's interpretation of images compared to human perception, shedding light on areas requiring improvement. Our methodologies, the Discrepancy Analysis Framework (DAF) and the Transformative Caption Analysis for CLIP (TCAC), enable a comprehensive evaluation of CLIP's performance. We identify 14 systemic faults, including Action vs. Stillness confusion, Failure to identify the direction of movement or positioning of objects in the image, Hallucination of Water-like Features, Misattribution of Geographic Context, among others. By addressing these limitations, we lay the groundwork for the development of more accurate and nuanced image embedding models, contributing to advancements in artificial intelligence.
Related papers
- Interpreting and Analyzing CLIP's Zero-Shot Image Classification via Mutual Knowledge [20.09852220432504]
Contrastive Language-Image Pretraining (CLIP) performs zero-shot image classification by mapping images and textual class representation into a shared embedding space.
This work provides a new approach for interpreting CLIP models for image classification from the lens of mutual knowledge between the two modalities.
arXiv Detail & Related papers (2024-10-16T20:18:21Z) - Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection [58.228940066769596]
We introduce a Dual-Image Enhanced CLIP approach, leveraging a joint vision-language scoring system.
Our methods process pairs of images, utilizing each as a visual reference for the other, thereby enriching the inference process with visual context.
Our approach significantly exploits the potential of vision-language joint anomaly detection and demonstrates comparable performance with current SOTA methods across various datasets.
arXiv Detail & Related papers (2024-05-08T03:13:20Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Understanding the Vulnerability of CLIP to Image Compression [26.536819387473482]
We show that CLIP is vulnerable to change in image quality under compression.
We evaluate this vulnerability extensively on CIFAR-10 and STL-10.
arXiv Detail & Related papers (2023-11-23T14:33:53Z) - CLIP meets Model Zoo Experts: Pseudo-Supervision for Visual Enhancement [65.47237619200442]
Contrastive language image pretraining (CLIP) is a standard method for training vision-language models.
We augment CLIP training with task-specific vision models from model zoos to improve its visual representations.
This simple setup shows substantial improvements of up to 16.3% across different vision tasks.
arXiv Detail & Related papers (2023-10-21T20:20:13Z) - GOPro: Generate and Optimize Prompts in CLIP using Self-Supervised
Learning [14.532939492926406]
We propose a prompt learning-based model called GOPro to overcome challenges of CLIP's contrastive loss and SSL's loss.
GOro is trained end-to-end on all three loss objectives, combining the strengths of CLIP and SSL in a principled manner.
arXiv Detail & Related papers (2023-08-22T17:53:26Z) - Distilling Knowledge from Text-to-Image Generative Models Improves Visio-Linguistic Reasoning in CLIP [57.53087077735303]
We introduce SDS-CLIP, a lightweight and sample-efficient distillation method to enhance CLIP's compositional visio-linguistic reasoning.
Our approach fine-tunes CLIP using a distillation objective borrowed from large text-to-image generative models like Stable-Diffusion.
On the challenging Winoground benchmark, SDS-CLIP improves the visio-linguistic performance of various CLIP models by up to 7%, while on the ARO dataset, it boosts performance by up to 3%.
arXiv Detail & Related papers (2023-07-18T13:10:11Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
We introduce Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner.
Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.
arXiv Detail & Related papers (2022-07-25T17:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.