Interpreting and Analyzing CLIP's Zero-Shot Image Classification via Mutual Knowledge
- URL: http://arxiv.org/abs/2410.13016v2
- Date: Sun, 20 Oct 2024 19:38:09 GMT
- Title: Interpreting and Analyzing CLIP's Zero-Shot Image Classification via Mutual Knowledge
- Authors: Fawaz Sammani, Nikos Deligiannis,
- Abstract summary: Contrastive Language-Image Pretraining (CLIP) performs zero-shot image classification by mapping images and textual class representation into a shared embedding space.
This work provides a new approach for interpreting CLIP models for image classification from the lens of mutual knowledge between the two modalities.
- Score: 20.09852220432504
- License:
- Abstract: Contrastive Language-Image Pretraining (CLIP) performs zero-shot image classification by mapping images and textual class representation into a shared embedding space, then retrieving the class closest to the image. This work provides a new approach for interpreting CLIP models for image classification from the lens of mutual knowledge between the two modalities. Specifically, we ask: what concepts do both vision and language CLIP encoders learn in common that influence the joint embedding space, causing points to be closer or further apart? We answer this question via an approach of textual concept-based explanations, showing their effectiveness, and perform an analysis encompassing a pool of 13 CLIP models varying in architecture, size and pretraining datasets. We explore those different aspects in relation to mutual knowledge, and analyze zero-shot predictions. Our approach demonstrates an effective and human-friendly way of understanding zero-shot classification decisions with CLIP.
Related papers
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - Finetuning CLIP to Reason about Pairwise Differences [52.028073305958074]
We propose an approach to train vision-language models such as CLIP in a contrastive manner to reason about differences in embedding space.
We first demonstrate that our approach yields significantly improved capabilities in ranking images by a certain attribute.
We also illustrate that the resulting embeddings obey a larger degree of geometric properties in embedding space.
arXiv Detail & Related papers (2024-09-15T13:02:14Z) - Semantic Compositions Enhance Vision-Language Contrastive Learning [46.985865191341944]
We show that the zero-shot classification and retrieval capabilities of CLIP-like models can be improved significantly through the introduction of semantically composite examples during pretraining.
Our method fuses the captions and blends 50% of each image to form a new composite sample.
The benefits of CLIP-C are particularly pronounced in settings with relatively limited pretraining data.
arXiv Detail & Related papers (2024-07-01T15:58:20Z) - Unveiling Glitches: A Deep Dive into Image Encoding Bugs within CLIP [0.0]
We focus on CLIP, a model renowned for its integration of vision and language processing.
Our objective is to uncover recurring problems and blind spots in CLIP's image comprehension.
We reveal significant discrepancies in CLIP's interpretation of images compared to human perception.
arXiv Detail & Related papers (2024-06-30T05:23:11Z) - Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP [84.90129481336659]
We study transferrable representation learning underlying CLIP and demonstrate how features from different modalities get aligned.
Inspired by our analysis, we propose a new CLIP-type approach, which achieves better performance than CLIP and other state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2023-10-02T06:41:30Z) - PerceptionCLIP: Visual Classification by Inferring and Conditioning on Contexts [33.109305627550405]
This paper draws inspiration from the human visual perception process.
We propose a training-free, two-step zero-shot classification method PerceptionCLIP.
Our experiments show that PerceptionCLIP achieves better generalization, group robustness, and interoperability.
arXiv Detail & Related papers (2023-08-02T17:57:25Z) - Cross-Modal Concept Learning and Inference for Vision-Language Models [31.463771883036607]
In existing fine-tuning methods, the class-specific text description is matched against the whole image.
We develop a new method called cross-model concept learning and inference (CCLI)
Our method automatically learns a large set of distinctive visual concepts from images using a set of semantic text concepts.
arXiv Detail & Related papers (2023-07-28T10:26:28Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
We introduce Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner.
Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.
arXiv Detail & Related papers (2022-07-25T17:58:16Z) - No Token Left Behind: Explainability-Aided Image Classification and
Generation [79.4957965474334]
We present a novel explainability-based approach, which adds a loss term to ensure that CLIP focuses on all relevant semantic parts of the input.
Our method yields an improvement in the recognition rate, without additional training or fine-tuning.
arXiv Detail & Related papers (2022-04-11T07:16:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.