論文の概要: Resolving Variable Respiratory Motion From Unsorted 4D Computed Tomography
- arxiv url: http://arxiv.org/abs/2407.00665v1
- Date: Sun, 30 Jun 2024 11:22:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 02:07:11.769272
- Title: Resolving Variable Respiratory Motion From Unsorted 4D Computed Tomography
- Title(参考訳): 非分類4次元CTによる可変呼吸運動の解消
- Authors: Yuliang Huang, Bjoern Eiben, Kris Thielemans, Jamie R. McClelland,
- Abstract要約: 代理駆動運動モデルは、4DCTからのCTセグメントに基づいて複数の周期にわたる可変運動を推定することができる。
本手法は,呼吸と呼吸の変動を含む動きの推定値とともに,高品質な動き補正画像を生成する。
- 参考スコア(独自算出の注目度): 0.6938240959023204
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 4D Computed Tomography (4DCT) is widely used for many clinical applications such as radiotherapy treatment planning, PET and ventilation imaging. However, common 4DCT methods reconstruct multiple breath cycles into a single, arbitrary breath cycle which can lead to various artefacts, impacting the downstream clinical applications. Surrogate driven motion models can estimate continuous variable motion across multiple cycles based on CT segments `unsorted' from 4DCT, but it requires respiration surrogate signals with strong correlation to the internal motion, which are not always available. The method proposed in this study eliminates such dependency by adapting the hyper-gradient method to the optimization of surrogate signals as hyper-parameters, while achieving better or comparable performance, as demonstrated on digital phantom simulations and real patient data. Our method produces a high-quality motion-compensated image together with estimates of the motion, including breath-to-breath variability, throughout the image acquisition. Our method has the potential to improve downstream clinical applications, and also enables retrospective analysis of open access 4DCT dataset where no respiration signals are stored. Code is avaibale at https://github.com/Yuliang-Huang/4DCT-irregular-motion.
- Abstract(参考訳): 4DCTは放射線治療計画、PET、換気画像などの多くの臨床応用に広く用いられている。
しかし、一般的な4DCT法は、複数の呼吸サイクルを1つの任意の呼吸サイクルに再構成し、様々な人工物につながり、下流の臨床応用に影響を及ぼす。
代理駆動運動モデルでは、4DCTのCTセグメント"unsorted"に基づいて複数のサイクルにわたる連続的な変動運動を推定することができるが、常に利用できるわけではない内部運動と強い相関を持つ呼吸代理信号が必要である。
本研究で提案する手法は,デジタルファントムシミュレーションや実際の患者データに示すように,超過度信号の最適化に過次法を適用することにより,その依存性を解消する。
提案手法は,高画質なモーション補正画像と,呼吸と呼吸の変動を含む動きの予測を画像取得を通して生成する。
本手法は, 下流の臨床応用を改善する可能性があり, 呼吸信号が保存されていないオープンアクセス4DCTデータセットの振り返り解析を可能にする。
Code is avaibale at https://github.com/Yuliang-Huang/4DCT-irregular-motion.com
関連論文リスト
- Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images [3.0013267540370423]
運動アーティファクトはCT画像の診断値を損なう可能性がある。
頭頂部CT画像の鮮明化のための確率密度推定器として機能するスコアベースモデルを訓練する。
運動影響CT画像の偏差を理想分布から推定する。
論文 参考訳(メタデータ) (2024-04-23T04:59:34Z) - CT respiratory motion synthesis using joint supervised and adversarial learning [1.0958341916240883]
本研究では,静止画像から擬似呼吸CT位相を生成する深層合成法を提案する。
このモデルでは,外部の患者表面をベースとしたコンディショニング合成により,患者特異的な変形ベクトル場(DVF)を生成する。
その結果, 生成した擬似呼吸CTの位相が, 同一患者の4DCTスキャンと同等の精度で臓器, 腫瘍の運動を捉えることができた。
論文 参考訳(メタデータ) (2024-03-29T21:40:12Z) - RMSim: Controlled Respiratory Motion Simulation on Static Patient Scans [7.575469466607952]
4D-CT画像から学習する3D Seq2Seqディープラーニング呼吸運動シミュレータ(RMSim)を提案する。
内科140例の10段階4D-CTを用いてRMSimを訓練・試験した。
RMSimの出力をプライベートとパブリック両方のベンチマークデータセットで検証しました。
論文 参考訳(メタデータ) (2023-01-26T21:20:14Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGASは、アンダーサンプドトモグラフィビューを合成し、再構成画像中のアーティファクトのエイリアスを緩和する自己教師手法を提案する。
高解像度4Dデータ上でのディープニューラルネットワークの大規模なメモリコストに対処するため、REGASは分散して微分可能なフォワードプロジェクションを可能にする新しいレイパス変換(RPT)を導入した。
論文 参考訳(メタデータ) (2022-08-17T03:42:19Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Non-invasive hemodynamic analysis for aortic regurgitation using
computational fluid dynamics and deep learning [2.150638298922378]
心臓血管血行動態の変化は大動脈逆流(AR)の発生と密接に関連している
4次元(4次元)流磁気共鳴画像(MRI)を用いて非侵襲的に測定できる。
しかし、解像度の低さは、しばしば4次元フローMRIと複雑なAR血行動態の限界によって生じる。
これを解決するために、計算流体力学シミュレーションを合成された4次元フローMRIデータに変換し、様々なニューラルネットワークのトレーニングに使用した。
論文 参考訳(メタデータ) (2021-11-23T05:19:42Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
本稿では,2つの入力枝を持つディープニューラルネットワークを用いた動きアーチファクトの除去手法を提案する。
提案法は患者の多動運動によって生成された人工物に応用できる。
論文 参考訳(メタデータ) (2020-06-24T15:25:11Z) - A Deep Learning Approach for Motion Forecasting Using 4D OCT Data [69.62333053044712]
我々は,OCTボリュームのストリームを用いたエンド・ツー・エンド動作予測と推定のための4次元時間深度学習を提案する。
提案手法は,全体の平均相関97.41%の動作予測を実現するとともに,従来の3D手法と比較して2.5倍の動作推定性能を向上する。
論文 参考訳(メタデータ) (2020-04-21T15:59:53Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
特定の対象領域の局所化と運動の推定は、外科的介入の際のナビゲーションの一般的な問題である。
OCT画像ボリュームの時間的ストリームを用いることで、深層学習に基づく動き推定性能が向上するかどうかを検討する。
モデル入力に4D情報を使用すると、合理的な推論時間を維持しながら性能が向上する。
論文 参考訳(メタデータ) (2020-04-21T15:43:01Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z) - 4D Semantic Cardiac Magnetic Resonance Image Synthesis on XCAT
Anatomical Model [0.7959841510571622]
心臓磁気共鳴画像(CMR)を3D+tラベルで合成するハイブリッド制御可能な画像生成法を提案する。
本手法は, 解剖学的根拠として, メカニスティック4D eXtended CArdiac Torso (XCAT) 心モデルを用いている。
本研究では、条件付き画像合成にSPADE(State-of-the-the-the-art SPatially Adaptive De-normalization)技術を用いる。
論文 参考訳(メタデータ) (2020-02-17T17:25:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。