論文の概要: CT respiratory motion synthesis using joint supervised and adversarial learning
- arxiv url: http://arxiv.org/abs/2404.00163v1
- Date: Fri, 29 Mar 2024 21:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 07:07:01.786587
- Title: CT respiratory motion synthesis using joint supervised and adversarial learning
- Title(参考訳): 関節教師と対位学習を用いたCT呼吸運動合成
- Authors: Yi-Heng Cao, Vincent Bourbonne, François Lucia, Ulrike Schick, Julien Bert, Vincent Jaouen, Dimitris Visvikis,
- Abstract要約: 本研究では,静止画像から擬似呼吸CT位相を生成する深層合成法を提案する。
このモデルでは,外部の患者表面をベースとしたコンディショニング合成により,患者特異的な変形ベクトル場(DVF)を生成する。
その結果, 生成した擬似呼吸CTの位相が, 同一患者の4DCTスキャンと同等の精度で臓器, 腫瘍の運動を捉えることができた。
- 参考スコア(独自算出の注目度): 1.0958341916240883
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Objective: Four-dimensional computed tomography (4DCT) imaging consists in reconstructing a CT acquisition into multiple phases to track internal organ and tumor motion. It is commonly used in radiotherapy treatment planning to establish planning target volumes. However, 4DCT increases protocol complexity, may not align with patient breathing during treatment, and lead to higher radiation delivery. Approach: In this study, we propose a deep synthesis method to generate pseudo respiratory CT phases from static images for motion-aware treatment planning. The model produces patient-specific deformation vector fields (DVFs) by conditioning synthesis on external patient surface-based estimation, mimicking respiratory monitoring devices. A key methodological contribution is to encourage DVF realism through supervised DVF training while using an adversarial term jointly not only on the warped image but also on the magnitude of the DVF itself. This way, we avoid excessive smoothness typically obtained through deep unsupervised learning, and encourage correlations with the respiratory amplitude. Main results: Performance is evaluated using real 4DCT acquisitions with smaller tumor volumes than previously reported. Results demonstrate for the first time that the generated pseudo-respiratory CT phases can capture organ and tumor motion with similar accuracy to repeated 4DCT scans of the same patient. Mean inter-scans tumor center-of-mass distances and Dice similarity coefficients were $1.97$mm and $0.63$, respectively, for real 4DCT phases and $2.35$mm and $0.71$ for synthetic phases, and compares favorably to a state-of-the-art technique (RMSim).
- Abstract(参考訳): 目的: 4次元CT(4DCT)画像は、CT取得を複数の段階に再構成し、内臓器と腫瘍の運動を追跡する。
放射線治療計画において、計画対象量を確立するために一般的に用いられる。
しかし、4DCTは、プロトコルの複雑さを増し、治療中の患者の呼吸と一致せず、より高い放射線伝達をもたらす可能性がある。
本研究では,静止画像から擬似呼吸CT位相を生成する深層合成法を提案する。
患者特異的な変形ベクトル場(DVF)を外部の患者表面から推定した条件付け合成により生成し,呼吸モニタリング装置を模倣する。
鍵となる方法論は、DVF訓練を監督し、歪んだ画像だけでなく、DVF自体の規模でも共用しながら、DVFリアリズムを促進することである。
このようにして、深い教師なし学習によって得られる過度な滑らかさを回避し、呼吸振幅との相関を助長する。
主な結果: 腫瘍容積の少ない4DCTによる実検体を用いて, 評価を行った。
その結果, 生成した擬似呼吸CTの位相が, 同一患者の4DCTスキャンと同等の精度で臓器, 腫瘍の運動を捉えることができた。
平均質量間腫瘍中心距離とDice類似係数はそれぞれ1.97$mmと0.63$で、実際の4DCT相は2.35$mmと0.71$で合成相は2.35$mmと0.71$であり、最先端技術(RMSim)と比較すると好ましい。
関連論文リスト
- 4D VQ-GAN: Synthesising Medical Scans at Any Time Point for Personalised Disease Progression Modelling of Idiopathic Pulmonary Fibrosis [5.926086195644801]
我々は,IPF患者をリアルなCTボリュームで生成できるモデルである4D-VQ-GAN(4D Vector Quantated Generative Adversarial Networks)を提案する。
縦断的CT画像を生成するためのモデルの異なる構成を評価し, 結果と地中真理データを比較した。
論文 参考訳(メタデータ) (2025-02-08T22:25:53Z) - Resolving Variable Respiratory Motion From Unsorted 4D Computed Tomography [0.6938240959023204]
代理駆動運動モデルは、4DCTからのCTセグメントに基づいて複数の周期にわたる可変運動を推定することができる。
本手法は,呼吸と呼吸の変動を含む動きの推定値とともに,高品質な動き補正画像を生成する。
論文 参考訳(メタデータ) (2024-06-30T11:22:55Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Evaluation of Synthetically Generated CT for use in Transcranial Focused
Ultrasound Procedures [5.921808547303054]
経頭蓋骨集束超音波(TFUS)は、頭蓋骨を通して音を非侵襲的に、しばしばMRI誘導下で小さな領域に集束する治療用超音波法である。
CT画像は、個々の頭蓋骨間で異なる音響特性を推定するために使われ、tFUS手術中に効果的に焦点を合わせることができる。
そこで我々は,3Dパッチベースの条件付き生成対向ネットワーク(cGAN)を用いて,日常的に取得したT1強調MRIからCT画像を合成した。
我々は,Kranion を用いた tFUS 計画のための sCT と実CT (rCT) 画像を比較し,音響ツールボックスを用いたシミュレーションを行った。
論文 参考訳(メタデータ) (2022-10-26T15:15:24Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
CTによる肺結節の早期発見は,肺癌患者の長期生存と生活の質の向上に不可欠である。
CAD (Computer-Aided Detection/diagnosis) はこの文脈において第2または同時読影器として有用である。
肺結節の正確な検出は、サイズ、位置、および肺結節の出現のばらつきにより、CADシステムや放射線技師にとって依然として困難である。
近年のコンピュータビジョン技術に触発されて,肺結節を同定するための自己教師付き領域ベース3次元トランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-04-30T01:19:00Z) - Synthetic CT Skull Generation for Transcranial MR Imaging-Guided Focused
Ultrasound Interventions with Conditional Adversarial Networks [5.921808547303054]
経頭蓋MRIガイド下集束超音波(TcMRgFUS)は頭蓋骨内の音をMRIガイド下において非侵襲的に小さな領域に集束する治療用超音波法である。
頭蓋骨を通して超音波を的確に標的にするためには、送信波が目標領域に建設的に干渉する必要がある。
論文 参考訳(メタデータ) (2022-02-21T11:34:29Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。