論文の概要: TEAL: New Selection Strategy for Small Buffers in Experience Replay Class Incremental Learning
- arxiv url: http://arxiv.org/abs/2407.00673v1
- Date: Sun, 30 Jun 2024 12:09:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 02:07:11.760847
- Title: TEAL: New Selection Strategy for Small Buffers in Experience Replay Class Incremental Learning
- Title(参考訳): TEAL: 経験的リプレイ学習における小さなバッファの選択戦略
- Authors: Shahar Shaul-Ariel, Daphna Weinshall,
- Abstract要約: TEALは,メモリを例に示す新しい手法である。
TEAL は複数の画像認識ベンチマークにおいて,SOTA 法 XDER と ER と ER-ACE の平均精度を向上することを示す。
- 参考スコア(独自算出の注目度): 7.627299398469962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual Learning is an unresolved challenge, whose relevance increases when considering modern applications. Unlike the human brain, trained deep neural networks suffer from a phenomenon called Catastrophic Forgetting, where they progressively lose previously acquired knowledge upon learning new tasks. To mitigate this problem, numerous methods have been developed, many relying on replaying past exemplars during new task training. However, as the memory allocated for replay decreases, the effectiveness of these approaches diminishes. On the other hand, maintaining a large memory for the purpose of replay is inefficient and often impractical. Here we introduce TEAL, a novel approach to populate the memory with exemplars, that can be integrated with various experience-replay methods and significantly enhance their performance on small memory buffers. We show that TEAL improves the average accuracy of the SOTA method XDER as well as ER and ER-ACE on several image recognition benchmarks, with a small memory buffer of 1-3 exemplars per class in the final task. This confirms the hypothesis that when memory is scarce, it is best to prioritize the most typical data.
- Abstract(参考訳): 継続的学習は未解決の課題であり、現代のアプリケーションを考えると、その関連性は増大する。
人間の脳とは異なり、訓練されたディープニューラルネットワークは、カタストロフィックフォーッティングと呼ばれる現象に苦しむ。
この問題を軽減するために、多くの手法が開発され、その多くは新しいタスクトレーニング中に過去の例を再生することに依存している。
しかし、リプレイに割り当てられたメモリが減少するにつれて、これらのアプローチの有効性は低下する。
一方、リプレイのために大きなメモリを維持することは非効率であり、しばしば実用的ではない。
本稿では,様々な経験再生手法と統合し,小さなメモリバッファ上での性能を著しく向上させることができる,メモリを初期化するための新しい手法TEALを紹介する。
TEAL は複数の画像認識ベンチマークにおいて SOTA メソッド XDER と ER-ACE の平均精度を向上し,最終タスクではクラスごとのメモリバッファが 1-3 であることを示す。
これは、メモリが不足している場合には、最も典型的なデータを優先順位付けするのが最善である、という仮説を裏付ける。
関連論文リスト
- Reducing Catastrophic Forgetting in Online Class Incremental Learning Using Self-Distillation [3.8506666685467343]
連続学習では、モデルが新しいタスクを学ぶと、以前の知識は忘れられる。
本稿では, 自己蒸留による伝達可能な知識の獲得により, この問題の解決を試みた。
提案手法は,CIFAR10,CIFAR100,MinimageNetデータセットを用いた実験により従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-09-17T16:26:33Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Continual Learning via Manifold Expansion Replay [36.27348867557826]
破滅的な忘れは継続的な学習にとって大きな課題である。
我々はReplay Manifold Expansion (MaER)と呼ばれる新しいリプレイ戦略を提案する。
提案手法は,連続的な学習設定における精度を著しく向上し,芸術的状況よりも優れることを示す。
論文 参考訳(メタデータ) (2023-10-12T05:09:27Z) - Saliency-Guided Hidden Associative Replay for Continual Learning [13.551181595881326]
継続学習(Continuous Learning)は、人間の学習に似た一連のタスクを通じてニューラルネットワークをトレーニングすることに焦点を当てた、次世代AIの急成長する領域である。
本稿では,継続的学習のためのSaliency Guided Hidden Associative Replayを提案する。
この新しいフレームワークは、アソシエイトメモリをリプレイベースの戦略でシナジする。SHARCは主にスパースメモリエンコーディングを通じて、有能なデータセグメントをアーカイブする。
論文 参考訳(メタデータ) (2023-10-06T15:54:12Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
忘れる方法は、継続的な学習に対処しなければならない問題である。
本稿では,連続学習のための新たなサリエンシ強化メモリ補完フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-26T18:06:39Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - Memory Replay with Data Compression for Continual Learning [80.95444077825852]
古いトレーニングサンプルの記憶コストを低減するため,データ圧縮によるメモリリプレイを提案する。
我々はこれを、クラスインクリメンタル学習のいくつかのベンチマークと、自律運転のためのオブジェクト検出の現実的なシナリオにおいて、広範囲に検証する。
論文 参考訳(メタデータ) (2022-02-14T10:26:23Z) - Saliency Guided Experience Packing for Replay in Continual Learning [6.417011237981518]
本研究では,経験再現のための新しいアプローチを提案し,過去の経験をサリエンシマップから選択する。
新しいタスクを学習している間、我々はこれらのメモリパッチを適切なゼロパディングで再生し、過去の決定をモデルに思い出させる。
論文 参考訳(メタデータ) (2021-09-10T15:54:58Z) - Always Be Dreaming: A New Approach for Data-Free Class-Incremental
Learning [73.24988226158497]
データフリークラスインクリメンタルラーニング(DFCIL)における高インパクト問題について考察する。
そこで本研究では, 改良型クロスエントロピートレーニングと重要重み付き特徴蒸留に寄与するDFCILの新たなインクリメンタル蒸留戦略を提案する。
本手法は,共通クラスインクリメンタルベンチマークにおけるSOTA DFCIL法と比較して,最終タスク精度(絶対差)が25.1%向上する。
論文 参考訳(メタデータ) (2021-06-17T17:56:08Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
効率的な強化学習のためのストアド埋め込み(SEER)について紹介します。
SEERは、既存の非政治深層強化学習方法の簡単な修正です。
計算とメモリを大幅に節約しながら、SEERがRLizableエージェントのパフォーマンスを低下させないことを示します。
論文 参考訳(メタデータ) (2021-03-04T08:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。