Model-based Offline Reinforcement Learning with Lower Expectile Q-Learning
- URL: http://arxiv.org/abs/2407.00699v2
- Date: Tue, 03 Dec 2024 03:06:34 GMT
- Title: Model-based Offline Reinforcement Learning with Lower Expectile Q-Learning
- Authors: Kwanyoung Park, Youngwoon Lee,
- Abstract summary: We introduce a novel model-based offline RL method, Lower Expectile Q-learning (LEQ)
LEQ provides a low-bias model-based value estimation via lower expectile regression of $lambda$-returns.
Our studies demonstrate that lower expectile regression, $lambda$-returns, and critic training on offline data are all crucial for LEQ.
- Score: 6.345851712811528
- License:
- Abstract: Model-based offline reinforcement learning (RL) is a compelling approach that addresses the challenge of learning from limited, static data by generating imaginary trajectories using learned models. However, these approaches often struggle with inaccurate value estimation from model rollouts. In this paper, we introduce a novel model-based offline RL method, Lower Expectile Q-learning (LEQ), which provides a low-bias model-based value estimation via lower expectile regression of $\lambda$-returns. Our empirical results show that LEQ significantly outperforms previous model-based offline RL methods on long-horizon tasks, such as the D4RL AntMaze tasks, matching or surpassing the performance of model-free approaches and sequence modeling approaches. Furthermore, LEQ matches the performance of state-of-the-art model-based and model-free methods in dense-reward environments across both state-based tasks (NeoRL and D4RL) and pixel-based tasks (V-D4RL), showing that LEQ works robustly across diverse domains. Our ablation studies demonstrate that lower expectile regression, $\lambda$-returns, and critic training on offline data are all crucial for LEQ.
Related papers
- Are Expressive Models Truly Necessary for Offline RL? [18.425797519857113]
Sequential modeling requires capturing accurate dynamics across long horizons in trajectory data to ensure reasonable policy performance.
We show that lightweight models as simple as shallow 2-layers can enjoy accurate dynamics consistency and significantly reduced sequential modeling errors.
arXiv Detail & Related papers (2024-12-15T17:33:56Z) - Offline Model-Based Reinforcement Learning with Anti-Exploration [0.0]
We present Morse Model-based offline RL (MoMo), which extends the anti-exploration paradigm found in offline model-free RL.
MoMo performs offline reinforcement learning using an anti-exploration bonus to counteract value overestimation.
The latter outperforms prior model-based and model-free baselines on the majority of D4RL datasets tested.
arXiv Detail & Related papers (2024-08-20T10:29:21Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
We study the problem of model selection in offline RL with value function approximation.
We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal inequalities up to logarithmic factors.
We conclude with several numerical simulations showing it is capable of reliably selecting a good model class.
arXiv Detail & Related papers (2022-11-03T17:32:34Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
Reinforcement learning (RL) is typically concerned with estimating single-step policies or single-step models.
We view RL as a sequence modeling problem, with the goal being to predict a sequence of actions that leads to a sequence of high rewards.
arXiv Detail & Related papers (2021-06-03T17:58:51Z) - Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow [14.422129911404472]
Bellman aims to fill this gap and introduces the first thoroughly designed and tested model-based RL toolbox.
Our modular approach enables to combine a wide range of environment models with generic model-based agent classes that recover state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-26T11:32:27Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Model-Augmented Q-learning [112.86795579978802]
We propose a MFRL framework that is augmented with the components of model-based RL.
Specifically, we propose to estimate not only the $Q$-values but also both the transition and the reward with a shared network.
We show that the proposed scheme, called Model-augmented $Q$-learning (MQL), obtains a policy-invariant solution which is identical to the solution obtained by learning with true reward.
arXiv Detail & Related papers (2021-02-07T17:56:50Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.