Generalizing Graph ODE for Learning Complex System Dynamics across
Environments
- URL: http://arxiv.org/abs/2307.04287v1
- Date: Mon, 10 Jul 2023 00:29:25 GMT
- Title: Generalizing Graph ODE for Learning Complex System Dynamics across
Environments
- Authors: Zijie Huang and Yizhou Sun and Wei Wang
- Abstract summary: GG-ODE is a machine learning framework for learning continuous multi-agent system dynamics across environments.
Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs)
Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range.
- Score: 33.63818978256567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning multi-agent system dynamics has been extensively studied for various
real-world applications, such as molecular dynamics in biology. Most of the
existing models are built to learn single system dynamics from observed
historical data and predict the future trajectory. In practice, however, we
might observe multiple systems that are generated across different
environments, which differ in latent exogenous factors such as temperature and
gravity. One simple solution is to learn multiple environment-specific models,
but it fails to exploit the potential commonalities among the dynamics across
environments and offers poor prediction results where per-environment data is
sparse or limited. Here, we present GG-ODE (Generalized Graph Ordinary
Differential Equations), a machine learning framework for learning continuous
multi-agent system dynamics across environments. Our model learns system
dynamics using neural ordinary differential equations (ODE) parameterized by
Graph Neural Networks (GNNs) to capture the continuous interaction among
agents. We achieve the model generalization by assuming the dynamics across
different environments are governed by common physics laws that can be captured
via learning a shared ODE function. The distinct latent exogenous factors
learned for each environment are incorporated into the ODE function to account
for their differences. To improve model performance, we additionally design two
regularization losses to (1) enforce the orthogonality between the learned
initial states and exogenous factors via mutual information minimization; and
(2) reduce the temporal variance of learned exogenous factors within the same
system via contrastive learning. Experiments over various physical simulations
show that our model can accurately predict system dynamics, especially in the
long range, and can generalize well to new systems with few observations.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
Real-world multi-agent systems are often dynamic and continuous, where the agents co-evolve and undergo changes in their trajectories and interactions over time.
We propose a novel model that captures the continuous interaction among agents using a Graph Neural Network (GNN) as the ODE function.
The key innovation of our model is to learn time-dependent representations of treatments and incorporate them into the ODE function, enabling precise predictions of potential outcomes.
arXiv Detail & Related papers (2024-02-29T23:07:07Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - SpReME: Sparse Regression for Multi-Environment Dynamic Systems [6.7053978622785415]
We develop a method of sparse regression dubbed SpReME to discover the major dynamics that underlie multiple environments.
We demonstrate that the proposed model captures the correct dynamics from multiple environments over four different dynamic systems with improved prediction performance.
arXiv Detail & Related papers (2023-02-12T15:45:50Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
We present LG-ODE, a latent ordinary differential equation generative model for modeling multi-agent dynamic system with known graph structure.
It can simultaneously learn the embedding of high dimensional trajectories and infer continuous latent system dynamics.
Our model employs a novel encoder parameterized by a graph neural network that can infer initial states in an unsupervised way.
arXiv Detail & Related papers (2020-11-08T01:02:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.