Disentangled Representations for Causal Cognition
- URL: http://arxiv.org/abs/2407.00744v1
- Date: Sun, 30 Jun 2024 16:10:17 GMT
- Title: Disentangled Representations for Causal Cognition
- Authors: Filippo Torresan, Manuel Baltieri,
- Abstract summary: Causal cognition studies describe the main characteristics of causal learning and reasoning in human and non-human animals.
Machine and reinforcement learning research on causality represent on the one hand a concrete attempt at designing causal artificial agents.
In this work, we connect these two areas of research to build a unifying framework for causal cognition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Complex adaptive agents consistently achieve their goals by solving problems that seem to require an understanding of causal information, information pertaining to the causal relationships that exist among elements of combined agent-environment systems. Causal cognition studies and describes the main characteristics of causal learning and reasoning in human and non-human animals, offering a conceptual framework to discuss cognitive performances based on the level of apparent causal understanding of a task. Despite the use of formal intervention-based models of causality, including causal Bayesian networks, psychological and behavioural research on causal cognition does not yet offer a computational account that operationalises how agents acquire a causal understanding of the world. Machine and reinforcement learning research on causality, especially involving disentanglement as a candidate process to build causal representations, represent on the one hand a concrete attempt at designing causal artificial agents that can shed light on the inner workings of natural causal cognition. In this work, we connect these two areas of research to build a unifying framework for causal cognition that will offer a computational perspective on studies of animal cognition, and provide insights in the development of new algorithms for causal reinforcement learning in AI.
Related papers
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning [70.16523526957162]
Understanding commonsense causality helps people understand the principles of the real world better.
Despite its significance, a systematic exploration of this topic is notably lacking.
Our work aims to provide a systematic overview, update scholars on recent advancements, and provide a pragmatic guide for beginners.
arXiv Detail & Related papers (2024-06-27T16:30:50Z) - Fundamental Properties of Causal Entropy and Information Gain [0.22252684361733285]
Recent developments enable the quantification of causal control given a structural causal model (SCM)
Measures, named causal entropy and causal information gain, aim to address limitations in existing information theoretical approaches for machine learning tasks where causality plays a crucial role.
arXiv Detail & Related papers (2024-02-02T11:55:57Z) - Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
Causal emergence theory employs measures of causality to quantify emergence.
Two key problems are addressed: quantifying causal emergence and identifying it in data.
We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning.
arXiv Detail & Related papers (2023-12-28T04:20:46Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [60.244412212130264]
Causal-Consistency Chain-of-Thought harnesses multi-agent collaboration to bolster the faithfulness and causality of foundation models.
Our framework demonstrates significant superiority over state-of-the-art methods through extensive and comprehensive evaluations.
arXiv Detail & Related papers (2023-08-23T04:59:21Z) - Causal reasoning in typical computer vision tasks [11.95181390654463]
Causal theory models the intrinsic causal structure unaffected by data bias and is effective in avoiding spurious correlations.
This paper aims to comprehensively review the existing causal methods in typical vision and vision-language tasks such as semantic segmentation, object detection, and image captioning.
Future roadmaps are also proposed, including facilitating the development of causal theory and its application in other complex scenes and systems.
arXiv Detail & Related papers (2023-07-26T07:01:57Z) - Causal Deep Learning [77.49632479298745]
Causality has the potential to transform the way we solve real-world problems.
But causality often requires crucial assumptions which cannot be tested in practice.
We propose a new way of thinking about causality -- we call this causal deep learning.
arXiv Detail & Related papers (2023-03-03T19:19:18Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Towards Causal Representation Learning [96.110881654479]
The two fields of machine learning and graphical causality arose and developed separately.
There is now cross-pollination and increasing interest in both fields to benefit from the advances of the other.
arXiv Detail & Related papers (2021-02-22T15:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.