Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs
- URL: http://arxiv.org/abs/2308.11914v3
- Date: Tue, 26 Nov 2024 11:39:04 GMT
- Title: Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs
- Authors: Ziyi Tang, Ruilin Wang, Weixing Chen, Keze Wang, Yang Liu, Tianshui Chen, Liang Lin,
- Abstract summary: Causal-Consistency Chain-of-Thought harnesses multi-agent collaboration to bolster the faithfulness and causality of foundation models.
Our framework demonstrates significant superiority over state-of-the-art methods through extensive and comprehensive evaluations.
- Score: 60.244412212130264
- License:
- Abstract: Despite the progress of foundation models, knowledge-based reasoning remains a persistent challenge due to their limited capacity for knowledge recall and inference. Existing methods primarily focus on encouraging these models to plan and solve problems or extensively sample reasoning chains independently. However, these methods often overlook conceptual errors and inferential fallacies, inevitably leading to a series of notorious issues such as misleading conclusions, cognitive biases, and reduced decision quality. While explicit modeling of causality is argued to hold promise in addressing these issues, contemporary research efforts have thus far fallen short in achieving causality-based foundation models. Drawing inspiration from the orchestration of diverse specialized agents collaborating to tackle intricate tasks, we propose a framework named Causal-Consistency Chain-of-Thought (CaCo-CoT) that harnesses multi-agent collaboration to bolster the faithfulness and causality of foundation models, involving a set of reasoners and evaluators. These agents collaboratively work within a reasoning-and-consensus paradigm to improve faithfulness. The reasoners are tasked with generating reasoning chains for knowledge-intensive problems by mimicking human causal reasoning. Meanwhile, the evaluator scrutinizes the causal consistency of a reasoner's reasoning chain from a non-causal and a counterfactual perspective. Our framework demonstrates significant superiority over state-of-the-art methods through extensive and comprehensive evaluations across text-based and multi-modal knowledge reasoning tasks (e.g., science question answering and commonsense reasoning).
Related papers
- CSCE: Boosting LLM Reasoning by Simultaneous Enhancing of Casual Significance and Consistency [12.961692839965115]
Chain-based reasoning methods like chain of thought (CoT) play a rising role in solving reasoning tasks for large language models (LLMs)
This paper proposes a non-chain-based reasoning framework for simultaneous consideration of causal significance and consistency.
arXiv Detail & Related papers (2024-09-20T08:28:23Z) - Disentangled Representations for Causal Cognition [0.0]
Causal cognition studies describe the main characteristics of causal learning and reasoning in human and non-human animals.
Machine and reinforcement learning research on causality represent on the one hand a concrete attempt at designing causal artificial agents.
In this work, we connect these two areas of research to build a unifying framework for causal cognition.
arXiv Detail & Related papers (2024-06-30T16:10:17Z) - The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning [70.16523526957162]
Understanding commonsense causality helps people understand the principles of the real world better.
Despite its significance, a systematic exploration of this topic is notably lacking.
Our work aims to provide a systematic overview, update scholars on recent advancements, and provide a pragmatic guide for beginners.
arXiv Detail & Related papers (2024-06-27T16:30:50Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
We propose a novel conceptualization framework that forces models to perform conceptual reasoning on abstract questions.
We show that existing large language models fall short on conceptual reasoning, dropping 9% to 28% on various benchmarks.
We then discuss how models can improve since high-level abstract reasoning is key to unbiased and generalizable decision-making.
arXiv Detail & Related papers (2024-03-30T00:53:53Z) - Cause and Effect: Can Large Language Models Truly Understand Causality? [1.2334534968968969]
This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework.
The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through Large Language Models.
The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning.
arXiv Detail & Related papers (2024-02-28T08:02:14Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
Reasoning plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation.
We introduce seminal foundation models proposed or adaptable for reasoning.
We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models.
arXiv Detail & Related papers (2023-12-17T15:16:13Z) - DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning
in Language Models [28.712359821231182]
Large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking.
The transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation.
This study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning.
arXiv Detail & Related papers (2023-10-25T08:03:10Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities [19.83434949066066]
This paper introduces a novel intelligent framework, referred to as OlaGPT.
OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition.
The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms.
arXiv Detail & Related papers (2023-05-23T09:36:51Z) - Causal Inference Principles for Reasoning about Commonsense Causality [93.19149325083968]
Commonsense causality reasoning aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person.
Existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences.
Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages.
We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision.
arXiv Detail & Related papers (2022-01-31T06:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.