Harnessing Quantum Support Vector Machines for Cross-Domain Classification of Quantum States
- URL: http://arxiv.org/abs/2407.00774v2
- Date: Mon, 22 Jul 2024 11:06:22 GMT
- Title: Harnessing Quantum Support Vector Machines for Cross-Domain Classification of Quantum States
- Authors: Diksha Sharma, Vivek Balasaheb Sabale, Parvinder Singh, Atul Kumar,
- Abstract summary: Cross-domain classification is used to readdress the entanglement versus separability paradigm.
We show efficient classifications of two-qubit mixed states into entangled and separable classes.
Our results demonstrate the potential of the quantum support vector machine for classifying quantum states.
- Score: 1.3187011661009458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the present study, we use cross-domain classification using quantum machine learning for quantum advantages to readdress the entanglement versus separability paradigm. The inherent structure of quantum states and its relation to a particular class of quantum states are used to intuitively classify testing states from domains different from training states, called \textit{cross-domain classification}. Using our quantum machine learning algorithm, we demonstrate efficient classifications of two-qubit mixed states into entangled and separable classes. For analyzing the quantumness of correlations, our model adequately classifies Bell diagonal states as zero and non-zero discord states. In addition, we also extend our analysis to evaluate the robustness of our model using random local unitary transformations. Our results demonstrate the potential of the quantum support vector machine for classifying quantum states across the multi-dimensional Hilbert space in comparison to classical support vector machines and neural networks.
Related papers
- Quantum phase classification via quantum hypothesis testing [0.39102514525861415]
We propose a classification algorithm based on the quantum Neyman-Pearson test, which is theoretically optimal for distinguishing between two quantum states.
Our results show that the proposed method achieves lower classification error probabilities and significantly reduces the training cost.
These findings highlight the potential of quantum hypothesis testing as a powerful tool for quantum phase classification.
arXiv Detail & Related papers (2025-04-05T08:23:45Z) - Quantum-aware Transformer model for state classification [0.0]
We present a data-driven approach to entanglement classification using transformer-based neural networks.
Our dataset consists of a diverse set of bipartite states, including pure separable states, Werner entangled states, general entangled states, and maximally entangled states.
Our method achieves near-perfect classification accuracy, effectively distinguishing between separable and entangled states.
arXiv Detail & Related papers (2025-02-28T13:56:48Z) - Polynomially efficient quantum enabled variational Monte Carlo for training neural-network quantum states for physico-chemical applications [0.0]
Neural-network quantum states (NQS) offer an alternative to traditional variational ans"atze for physical systems.
Energy-based frameworks leverage statistical physics to map quantum states onto an energy landscape, functioning as memory descriptors.
We show that such models can be efficiently trained using Monte Carlo techniques enhanced by quantum devices.
arXiv Detail & Related papers (2024-12-16T23:11:41Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MORE stands for measurement and correlation based variational quantum multi-classifier.
We implement MORE using the Qiskit Python library and evaluate it through extensive experiments on both noise-free and noisy quantum systems.
arXiv Detail & Related papers (2023-07-21T19:33:10Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Digital Quantum Simulation and Circuit Learning for the Generation of
Coherent States [1.4153418423656923]
Two ways to digitally prepare coherent states in quantum circuits are introduced.
The high fidelity of the digitally generated coherent states is verified.
The simulation results show that quantum circuit learning can provide high fidelity on learning coherent states by choosing appropriate ansatzes.
arXiv Detail & Related papers (2022-10-30T09:06:21Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Q-means using variational quantum feature embedding [0.9572675949441442]
The objective of the Variational circuit is to maximally separate the clusters in the quantum feature Hilbert space.
The output of the quantum circuit are characteristic cluster quantum states that represent a superposition of all quantum states belonging to a particular cluster.
The gradient of the expectation value is used to optimize the parameters of the variational circuit to learn a better quantum feature map.
arXiv Detail & Related papers (2021-12-11T13:00:51Z) - Stochastic emulation of quantum algorithms [0.0]
We introduce higher-order partial derivatives of a probability distribution of particle positions as a new object that shares basic properties of quantum mechanical states needed for a quantum algorithm.
We prove that the propagation via the map built from those universal maps reproduces up to a prefactor exactly the evolution of the quantum mechanical state.
We implement several well-known quantum algorithms, analyse the scaling of the needed number of realizations with the number of qubits, and highlight the role of destructive interference for the cost of emulation.
arXiv Detail & Related papers (2021-09-16T07:54:31Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.