論文の概要: MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
- arxiv url: http://arxiv.org/abs/2407.00840v2
- Date: Wed, 05 Mar 2025 02:39:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 19:34:57.68163
- Title: MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
- Title(参考訳): MUSE-Net:不規則縦型電子健康記録用mUlti-branching Self-attention Encoder
- Authors: Zekai Wang, Tieming Liu, Bing Yao,
- Abstract要約: データ駆動型疾患予測のための縦型EHRのモデル化における課題に対処するため、ミススティングネスを意識したmUlti-branching Self-Attention(MUSE-Net)を提案する。
提案するMUSE-Netは,(1)データ計算に価値マスクが欠けているマルチタスクプロセス(MGP),(2)データ不均衡問題に対処するマルチブランチアーキテクチャ,(3)時間認識型自己保持エンコーダの4つのモジュールから構成される。
- 参考スコア(独自算出の注目度): 11.130065253661147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The era of big data has made vast amounts of clinical data readily available, particularly in the form of electronic health records (EHRs), which provides unprecedented opportunities for developing data-driven diagnostic tools to enhance clinical decision making. However, the application of EHRs in data-driven modeling faces challenges such as irregularly spaced multi-variate time series, issues of incompleteness, and data imbalance. Realizing the full data potential of EHRs hinges on the development of advanced analytical models. In this paper, we propose a novel Missingness-aware mUlti-branching Self-Attention Encoder (MUSE-Net) to cope with the challenges in modeling longitudinal EHRs for data-driven disease prediction. The proposed MUSE-Net is composed by four novel modules including: (1) a multi-task Gaussian process (MGP) with missing value masks for data imputation; (2) a multi-branching architecture to address the data imbalance problem; (3) a time-aware self-attention encoder to account for the irregularly spaced time interval in longitudinal EHRs; (4) interpretable multi-head attention mechanism that provides insights into the importance of different time points in disease prediction, allowing clinicians to trace model decisions. We evaluate the proposed MUSE-Net using both synthetic and real-world datasets. Experimental results show that our MUSE-Net outperforms existing methods that are widely used to investigate longitudinal signals.
- Abstract(参考訳): ビッグデータの時代は、特に電子健康記録(EHR)の形で、膨大な臨床データを容易に利用し、臨床意思決定を強化するためにデータ駆動診断ツールを開発する前例のない機会を提供している。
しかし、データ駆動モデリングにおける EHR の適用は、不規則な空間を持つ多変量時系列、不完全性の問題、データ不均衡といった課題に直面している。
EHRの完全なデータポテンシャルを実現するには、高度な分析モデルの開発が必要である。
本稿では,データ駆動型疾患予測のための縦型EHRのモデル化における課題に対処するため,MUSE-Net(Missingness-aware mUlti-branching Self-Attention Encoder)を提案する。
提案するMUSE-Netは,(1)データ計算に価値マスクが欠けているマルチタスクガウスプロセス(MGP),(2)データ不均衡問題に対処するマルチブランチアーキテクチャ,(3)時間認識型自己注意エンコーダ,(4)病気予測における異なる時間点の重要性の洞察を提供する解釈可能なマルチヘッドアテンション機構,の4つのモジュールから構成される。
合成と実世界の両方のデータセットを用いて,提案したMUSE-Netを評価する。
実験の結果,MUSE-Netは長手信号の探索に広く用いられている既存手法よりも優れていた。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Towards Precision Healthcare: Robust Fusion of Time Series and Image Data [8.579651833717763]
本稿では,データの種類毎に2つのエンコーダを用いて,視覚情報と時間情報の両方において複雑なパターンをモデル化する手法を提案する。
また、不均衡なデータセットに対処し、不確実性損失関数を使用し、改善した結果を得る。
本手法は,臨床応用におけるマルチモーダルディープラーニングの改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-05-24T11:18:13Z) - Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data [0.0]
本研究では、データ不確実性、ストレージ制限、ビッグデータを用いた予測データ駆動モデリングの課題をナビゲートする。
本稿では,ロバスト主成分分析(RPCA)を有効ノイズ低減と外乱除去に利用し,最適センサ配置(OSP)を効率的なデータ圧縮・記憶に活用する。
論文 参考訳(メタデータ) (2024-03-27T22:39:08Z) - TA-RNN: an Attention-based Time-aware Recurrent Neural Network Architecture for Electronic Health Records [0.0]
リカレントニューラルネットワーク(RNN)のような深層学習手法を用いて、ERHを分析して疾患の進行をモデル化し、診断を予測する。
本研究では,TA-RNN(Time-Aware RNN)とTA-RNN-Autoencoder(TA-RNN-AE)という,RNNに基づく2つの解釈可能なDLアーキテクチャを提案する。
本研究では,不規則な時間間隔の影響を軽減するため,訪問時間間の時間埋め込みを取り入れることを提案する。
論文 参考訳(メタデータ) (2024-01-26T07:34:53Z) - IGNITE: Individualized GeNeration of Imputations in Time-series
Electronic health records [7.451873794596469]
本研究では、患者動態を学習し、個人の人口動態の特徴や治療に合わせたパーソナライズされた値を生成する新しいディープラーニングモデルを提案する。
提案モデルであるIGNITEは,2段階の注意を付加した条件付き2変分オートエンコーダを用いて,個人に対して欠落した値を生成する。
IGNITEは,データ再構成の欠如やタスク予測において,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-01-09T07:57:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
本研究では,ERHにおける不規則な時系列に対処するため,COPERと呼ばれる新規患者状態パーセンシバーモデルを提案する。
ニューラル常微分方程式(ODE)は、COPERが通常の時系列を生成してPerceiverモデルに供給するのに役立ちます。
提案モデルの性能評価には,MIMIC-IIIデータセット上での院内死亡予測タスクを用いる。
論文 参考訳(メタデータ) (2022-08-05T14:32:57Z) - Multi-Label Clinical Time-Series Generation via Conditional GAN [23.380183382491495]
MTGAN(Multi-label Time-Series GAN)を用いて,EMHデータと不均衡な疾患を生成する。
批評家はワッサースタイン距離を用いてスコアを与え、データと時間的特徴の両方を考慮することで、合成サンプルから実際のサンプルを認識する。
実験により, MTGANの合成データの品質と実効性を示す。
論文 参考訳(メタデータ) (2022-04-10T23:30:07Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Coupled and Uncoupled Dynamic Mode Decomposition in Multi-Compartmental
Systems with Applications to Epidemiological and Additive Manufacturing
Problems [58.720142291102135]
非線形問題に適用した場合,動的分解(DMD)は強力なツールである可能性が示唆された。
特に,Covid-19に対する連続遅延SIRDモデルに対する興味深い数値的応用を示す。
論文 参考訳(メタデータ) (2021-10-12T21:42:14Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Handling Non-ignorably Missing Features in Electronic Health Records
Data Using Importance-Weighted Autoencoders [8.518166245293703]
本稿では,生体データのランダムなパターンではなく,欠落を柔軟に扱うために,重要度重み付きオートエンコーダ(iwaes)と呼ばれるvaesの新たな拡張を提案する。
提案手法は,組み込みニューラルネットワークを用いて欠落機構をモデル化し,欠落機構の正確な形式を事前に指定する必要をなくした。
論文 参考訳(メタデータ) (2021-01-18T22:53:29Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。