Dynamically Modulating Visual Place Recognition Sequence Length For Minimum Acceptable Performance Scenarios
- URL: http://arxiv.org/abs/2407.00863v1
- Date: Mon, 1 Jul 2024 00:16:35 GMT
- Title: Dynamically Modulating Visual Place Recognition Sequence Length For Minimum Acceptable Performance Scenarios
- Authors: Connor Malone, Ankit Vora, Thierry Peynot, Michael Milford,
- Abstract summary: Single image visual place recognition (VPR) provides an alternative for localization but often requires techniques such as sequence matching to improve robustness.
We present an approach which uses a calibration set of data to fit a model that modulates sequence length for VPR as needed to exceed a target localization performance.
- Score: 17.183024395686505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile robots and autonomous vehicles are often required to function in environments where critical position estimates from sensors such as GPS become uncertain or unreliable. Single image visual place recognition (VPR) provides an alternative for localization but often requires techniques such as sequence matching to improve robustness, which incurs additional computation and latency costs. Even then, the sequence length required to localize at an acceptable performance level varies widely; and simply setting overly long fixed sequence lengths creates unnecessary latency, computational overhead, and can even degrade performance. In these scenarios it is often more desirable to meet or exceed a set target performance at minimal expense. In this paper we present an approach which uses a calibration set of data to fit a model that modulates sequence length for VPR as needed to exceed a target localization performance. We make use of a coarse position prior, which could be provided by any other localization system, and capture the variation in appearance across this region. We use the correlation between appearance variation and sequence length to curate VPR features and fit a multilayer perceptron (MLP) for selecting the optimal length. We demonstrate that this method is effective at modulating sequence length to maximize the number of sections in a dataset which meet or exceed a target performance whilst minimizing the median length used. We show applicability across several datasets and reveal key phenomena like generalization capabilities, the benefits of curating features and the utility of non-state-of-the-art feature extractors with nuanced properties.
Related papers
- LaMPE: Length-aware Multi-grained Positional Encoding for Adaptive Long-context Scaling Without Training [45.74983991122073]
Large language models (LLMs) experience significant performance degradation when the input exceeds the pretraining context window.<n>Recent studies mitigate this problem by remapping OOD positions into the in-distribution range with fixed mapping strategies.<n>We propose Length-aware Multi-grained Positional Scaling (LaMPE), a training-free method that fully utilizes the model's effective context window.
arXiv Detail & Related papers (2025-08-04T11:22:13Z) - OptiCorNet: Optimizing Sequence-Based Context Correlation for Visual Place Recognition [2.3093110834423616]
This paper presents OptiCorNet, a novel sequence modeling framework.<n>It unifies spatial feature extraction and temporal differencing into a differentiable, end-to-end trainable module.<n>Our approach outperforms state-of-the-art baselines under challenging seasonal and viewpoint variations.
arXiv Detail & Related papers (2025-07-19T04:29:43Z) - Continual Adaptation: Environment-Conditional Parameter Generation for Object Detection in Dynamic Scenarios [54.58186816693791]
environments constantly change over time and space, posing significant challenges for object detectors trained based on a closed-set assumption.<n>We propose a new mechanism, converting the fine-tuning process to a specific- parameter generation.<n>In particular, we first design a dual-path LoRA-based domain-aware adapter that disentangles features into domain-invariant and domain-specific components.
arXiv Detail & Related papers (2025-06-30T17:14:12Z) - AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection [58.67129770371016]
We propose a novel IRSTD framework that reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization.<n>AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy.
arXiv Detail & Related papers (2025-05-21T07:02:05Z) - Towards Efficient Real-Time Video Motion Transfer via Generative Time Series Modeling [7.3949576464066]
We propose a deep learning framework designed to significantly optimize bandwidth for motion-transfer-enabled video applications.
To capture complex motion effectively, we utilize the First Order Motion Model (FOMM), which encodes dynamic objects by detecting keypoints.
We validate our results across three datasets for video animation and reconstruction using the following metrics: Mean Absolute Error, Joint Embedding Predictive Architecture Embedding Distance, Structural Similarity Index, and Average Pair-wise Displacement.
arXiv Detail & Related papers (2025-04-07T22:21:54Z) - MATEY: multiscale adaptive foundation models for spatiotemporal physical systems [2.7767126393602726]
We propose two adaptive tokenization schemes that dynamically adjust patch sizes based on local features.
We evaluate the performance of a proposed multiscale adaptive model, MATEY, in a sequence of experiments.
We also demonstrate fine-tuning tasks featuring different physics that models pretrained on PDE data.
arXiv Detail & Related papers (2024-12-29T22:13:16Z) - Multi-Modality Driven LoRA for Adverse Condition Depth Estimation [61.525312117638116]
We propose Multi-Modality Driven LoRA (MMD-LoRA) for Adverse Condition Depth Estimation.
It consists of two core components: Prompt Driven Domain Alignment (PDDA) and Visual-Text Consistent Contrastive Learning (VTCCL)
It achieves state-of-the-art performance on the nuScenes and Oxford RobotCar datasets.
arXiv Detail & Related papers (2024-12-28T14:23:58Z) - FiRST: Finetuning Router-Selective Transformers for Input-Adaptive Latency Reduction [11.146015814220858]
FIRST is an algorithm that reduces inference latency by using layer-specific routers to select a subset of transformer layers adaptively for each input sequence.
Our approach reveals that input adaptivity is critical - indeed, different task-specific middle layers play a crucial role in evolving hidden representations depending on task.
arXiv Detail & Related papers (2024-10-16T12:45:35Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
We propose UmambaTSF, a novel long-term time series forecasting framework.
It integrates multi-scale feature extraction capabilities of U-shaped encoder-decoder multilayer perceptrons (MLP) with Mamba's long sequence representation.
UmambaTSF achieves state-of-the-art performance and excellent generality on widely used benchmark datasets.
arXiv Detail & Related papers (2024-10-15T04:56:43Z) - Path-adaptive Spatio-Temporal State Space Model for Event-based Recognition with Arbitrary Duration [9.547947845734992]
Event cameras are bio-inspired sensors that capture the intensity changes asynchronously and output event streams.
We present a novel framework, dubbed PAST-Act, exhibiting superior capacity in recognizing events with arbitrary duration.
We also build a minute-level event-based recognition dataset, named ArDVS100, with arbitrary duration for the benefit of the community.
arXiv Detail & Related papers (2024-09-25T14:08:37Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
We propose CHELA, which replaces state space models with short-long convolutions and implements linear attention in a divide-and-conquer manner.
Our experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-06-12T12:12:38Z) - LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory [63.41820940103348]
Self-attention mechanism's computational cost limits its practicality for long sequences.
We propose a new method called LongVQ to compress the global abstraction as a length-fixed codebook.
LongVQ effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues.
arXiv Detail & Related papers (2024-04-17T08:26:34Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
We propose a novel frequency-aware architecture, in which the domain-specific features are filtered out in the transformed frequency domain.
Experiments on three benchmarks demonstrate significant performance, outperforming the state-of-the-art methods by a margin of 3%, 4% and 9%, respectively.
arXiv Detail & Related papers (2022-03-24T07:26:29Z) - Adaptive Multi-Resolution Attention with Linear Complexity [18.64163036371161]
We propose a novel structure named Adaptive Multi-Resolution Attention (AdaMRA) for short.
We leverage a multi-resolution multi-head attention mechanism, enabling attention heads to capture long-range contextual information in a coarse-to-fine fashion.
To facilitate AdaMRA utilization by the scientific community, the code implementation will be made publicly available.
arXiv Detail & Related papers (2021-08-10T23:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.