mTREE: Multi-Level Text-Guided Representation End-to-End Learning for Whole Slide Image Analysis
- URL: http://arxiv.org/abs/2405.17824v1
- Date: Tue, 28 May 2024 04:47:44 GMT
- Title: mTREE: Multi-Level Text-Guided Representation End-to-End Learning for Whole Slide Image Analysis
- Authors: Quan Liu, Ruining Deng, Can Cui, Tianyuan Yao, Vishwesh Nath, Yucheng Tang, Yuankai Huo,
- Abstract summary: Multi-modal learning adeptly integrates visual and textual data, but its application to histopathology image and text analysis remains challenging.
We introduce Multi-Level Text-Guided Representation End-to-End Learning (mTREE)
This novel text-guided approach effectively captures multi-scale Whole Slide Images (WSIs) by utilizing information from accompanying textual pathology information.
- Score: 16.472295458683696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal learning adeptly integrates visual and textual data, but its application to histopathology image and text analysis remains challenging, particularly with large, high-resolution images like gigapixel Whole Slide Images (WSIs). Current methods typically rely on manual region labeling or multi-stage learning to assemble local representations (e.g., patch-level) into global features (e.g., slide-level). However, there is no effective way to integrate multi-scale image representations with text data in a seamless end-to-end process. In this study, we introduce Multi-Level Text-Guided Representation End-to-End Learning (mTREE). This novel text-guided approach effectively captures multi-scale WSI representations by utilizing information from accompanying textual pathology information. mTREE innovatively combines - the localization of key areas (global-to-local) and the development of a WSI-level image-text representation (local-to-global) - into a unified, end-to-end learning framework. In this model, textual information serves a dual purpose: firstly, functioning as an attention map to accurately identify key areas, and secondly, acting as a conduit for integrating textual features into the comprehensive representation of the image. Our study demonstrates the effectiveness of mTREE through quantitative analyses in two image-related tasks: classification and survival prediction, showcasing its remarkable superiority over baselines.
Related papers
- AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization [57.34659640776723]
We propose an end-to-end framework named AddressCLIP to solve the problem with more semantics.
We have built three datasets from Pittsburgh and San Francisco on different scales specifically for the IAL problem.
arXiv Detail & Related papers (2024-07-11T03:18:53Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - TextCoT: Zoom In for Enhanced Multimodal Text-Rich Image Understanding [91.30065932213758]
Large Multimodal Models (LMMs) have sparked a surge in research aimed at harnessing their remarkable reasoning abilities.
We propose TextCoT, a novel Chain-of-Thought framework for text-rich image understanding.
Our method is free of extra training, offering immediate plug-and-play functionality.
arXiv Detail & Related papers (2024-04-15T13:54:35Z) - CoPL: Contextual Prompt Learning for Vision-Language Understanding [21.709017504227823]
We propose a Contextual Prompt Learning (CoPL) framework, capable of aligning the prompts to the localized features of the image.
Our key innovations over earlier works include using local image features as part of the prompt learning process, and more crucially, learning to weight these prompts based on local features that are appropriate for the task at hand.
Our method produces substantially improved performance when compared to the current state of the art methods.
arXiv Detail & Related papers (2023-07-03T10:14:33Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
This work presents new methods to employ visual information as assistant signals to general NLP tasks.
For each sentence, we first retrieve a flexible number of images either from a light topic-image lookup table extracted over the existing sentence-image pairs.
Then, the text and images are encoded by a Transformer encoder and convolutional neural network, respectively.
arXiv Detail & Related papers (2023-01-09T13:54:11Z) - HGAN: Hierarchical Graph Alignment Network for Image-Text Retrieval [13.061063817876336]
We propose a novel Hierarchical Graph Alignment Network (HGAN) for image-text retrieval.
First, to capture the comprehensive multimodal features, we construct the feature graphs for the image and text modality respectively.
Then, a multi-granularity shared space is established with a designed Multi-granularity Feature Aggregation and Rearrangement (MFAR) module.
Finally, the ultimate image and text features are further refined through three-level similarity functions to achieve the hierarchical alignment.
arXiv Detail & Related papers (2022-12-16T05:08:52Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - Vision-Language Pre-Training with Triple Contrastive Learning [45.80365827890119]
We propose triple contrastive learning (TCL) for vision-language pre-training by leveraging both cross-modal and intra-modal self-supervision.
Ours is the first work that takes into account local structure information for multi-modality representation learning.
arXiv Detail & Related papers (2022-02-21T17:54:57Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Multi-Modal Reasoning Graph for Scene-Text Based Fine-Grained Image
Classification and Retrieval [8.317191999275536]
This paper focuses on leveraging multi-modal content in the form of visual and textual cues to tackle the task of fine-grained image classification and retrieval.
We employ a Graph Convolutional Network to perform multi-modal reasoning and obtain relationship-enhanced features by learning a common semantic space between salient objects and text found in an image.
arXiv Detail & Related papers (2020-09-21T12:31:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.