Flood Prediction Using Classical and Quantum Machine Learning Models
- URL: http://arxiv.org/abs/2407.01001v1
- Date: Mon, 1 Jul 2024 06:31:41 GMT
- Title: Flood Prediction Using Classical and Quantum Machine Learning Models
- Authors: Marek Grzesiak, Param Thakkar,
- Abstract summary: This study investigates the potential of quantum machine learning to improve flood forecasting.
We focus on daily flood events along Germany's Wupper River in 2023.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the potential of quantum machine learning to improve flood forecasting we focus on daily flood events along Germany's Wupper River in 2023 our approach combines classical machine learning techniques with QML techniques this hybrid model leverages quantum properties like superposition and entanglement to achieve better accuracy and efficiency classical and QML models are compared based on training time accuracy and scalability results show that QML models offer competitive training times and improved prediction accuracy this research signifies a step towards utilizing quantum technologies for climate change adaptation we emphasize collaboration and continuous innovation to implement this model in real-world flood management ultimately enhancing global resilience against floods
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Computable Model-Independent Bounds for Adversarial Quantum Machine Learning [4.857505043608425]
We introduce the first of an approximate lower bound for adversarial error when evaluating model resilience against quantum-based adversarial attacks.
In the best case, the experimental error is only 10% above the estimated bound, offering evidence of the inherent robustness of quantum models.
arXiv Detail & Related papers (2024-11-11T10:56:31Z) - QESM: A Leap Towards Quantum-Enhanced ML Emulation Framework for Earth and Climate Modeling [0.1652179599507607]
Current climate models often struggle with accuracy because they lack sufficient resolution.
We replace conventional models like CNN with their quantum versions.
These quantum models proved to be more accurate in predicting climate-related outcomes.
arXiv Detail & Related papers (2024-10-02T13:40:37Z) - Quantum-Train Long Short-Term Memory: Application on Flood Prediction Problem [0.8192907805418583]
This study applies the Quantum-Train (QT) technique to a forecasting Long Short-Term Memory (LSTM) model trained by Quantum Machine Learning (QML)
The QT technique, originally successful in the A Matter of Taste challenge at QHack 2024, leverages QML to reduce the number of trainable parameters to a polylogarithmic function of the number of parameters in a classical neural network (NN)
Our approach directly processes classical data without the need for quantum embedding and operates independently of quantum computing resources post-training.
arXiv Detail & Related papers (2024-07-11T15:56:00Z) - Forecasting the steam mass flow in a powerplant using the parallel
hybrid network [0.0]
In this study, we use a parallel hybrid neural network architecture that combines a parametrized quantum circuit and a conventional feed-forward neural network.
Our results show that the parallel hybrid model outperforms standalone classical and quantum models.
arXiv Detail & Related papers (2023-07-18T17:59:25Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Quantum Reinforcement Learning for Solving a Stochastic Frozen Lake
Environment and the Impact of Quantum Architecture Choices [0.0]
Quantum reinforcement learning (QRL) models augment classical reinforcement learning schemes with quantum-enhanced kernels.
Different proposals on how to construct such models empirically show a promising performance.
It is however unclear how these quantum-enhanced kernels as subroutines within a reinforcement learning pipeline need to be constructed to indeed result in an improved performance.
arXiv Detail & Related papers (2022-12-15T16:08:31Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.