Computable Model-Independent Bounds for Adversarial Quantum Machine Learning
- URL: http://arxiv.org/abs/2411.06863v1
- Date: Mon, 11 Nov 2024 10:56:31 GMT
- Title: Computable Model-Independent Bounds for Adversarial Quantum Machine Learning
- Authors: Bacui Li, Tansu Alpcan, Chandra Thapa, Udaya Parampalli,
- Abstract summary: We introduce the first of an approximate lower bound for adversarial error when evaluating model resilience against quantum-based adversarial attacks.
In the best case, the experimental error is only 10% above the estimated bound, offering evidence of the inherent robustness of quantum models.
- Score: 4.857505043608425
- License:
- Abstract: By leveraging the principles of quantum mechanics, QML opens doors to novel approaches in machine learning and offers potential speedup. However, machine learning models are well-documented to be vulnerable to malicious manipulations, and this susceptibility extends to the models of QML. This situation necessitates a thorough understanding of QML's resilience against adversarial attacks, particularly in an era where quantum computing capabilities are expanding. In this regard, this paper examines model-independent bounds on adversarial performance for QML. To the best of our knowledge, we introduce the first computation of an approximate lower bound for adversarial error when evaluating model resilience against sophisticated quantum-based adversarial attacks. Experimental results are compared to the computed bound, demonstrating the potential of QML models to achieve high robustness. In the best case, the experimental error is only 10% above the estimated bound, offering evidence of the inherent robustness of quantum models. This work not only advances our theoretical understanding of quantum model resilience but also provides a precise reference bound for the future development of robust QML algorithms.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Quantum Machine Learning Architecture Search via Deep Reinforcement Learning [8.546707309430593]
We introduce deep reinforcement learning to explore proficient QML model architectures tailored for supervised learning tasks.
Our methodology involves training an RL agent to devise policies that facilitate the discovery of QML models without predetermined ansatz.
Our proposed method successfully identifies VQC architectures capable of achieving high classification accuracy while minimizing gate depth.
arXiv Detail & Related papers (2024-07-29T16:20:51Z) - Quantum Long Short-Term Memory for Drug Discovery [15.186004892998382]
We successfully apply quantum machine learning (QML) to drug discovery.
We show that QML can significantly improve model performance and achieve faster convergence compared to classical ML.
This work highlights the potential application of quantum computing to yield significant benefits for scientific advancement.
arXiv Detail & Related papers (2024-07-29T10:10:03Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Financial Fraud Detection: A Comparative Study of Quantum Machine
Learning Models [0.0]
The Quantum Support Vector model achieved the highest performance, with F1 scores of 0.98 0.98 for fraud and non-fraud classes.
The article provides solutions to overcome current limitations and contributes new insights to the field of Quantum Machine Learning in fraud detection.
arXiv Detail & Related papers (2023-08-09T21:47:50Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Structural risk minimization for quantum linear classifiers [0.0]
Quantum machine learning (QML) stands out as one of the typically highlighted candidates for quantum computing's near-term "killer application"
We investigate capacity measures of two closely related QML models called explicit and implicit quantum linear classifiers.
We identify that the rank and Frobenius norm of the observables used in the QML model closely control the model's capacity.
arXiv Detail & Related papers (2021-05-12T10:39:55Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Predicting toxicity by quantum machine learning [11.696069523681178]
We develop QML models for predicting the toxicity of 221 phenols on the basis of quantitative structure activity relationship.
Results suggest that our data encoding enhanced by quantum entanglement provided more expressive power than the previous ones.
arXiv Detail & Related papers (2020-08-18T02:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.