Data re-uploading in Quantum Machine Learning for time series: application to traffic forecasting
- URL: http://arxiv.org/abs/2501.12776v1
- Date: Wed, 22 Jan 2025 10:21:00 GMT
- Title: Data re-uploading in Quantum Machine Learning for time series: application to traffic forecasting
- Authors: Nikolaos Schetakis, Paolo Bonfini, Negin Alisoltani, Konstantinos Blazakis, Symeon I. Tsintzos, Alexis Askitopoulos, Davit Aghamalyan, Panagiotis Fafoutellis, Eleni I. Vlahogianni,
- Abstract summary: We present the first application of quantum data re-uploading in the context of transport forecasting.
This technique allows quantum models to better capture complex patterns, such as traffic dynamics, by repeatedly encoding classical data into a quantum state.
Our results show that hybrid models achieve competitive accuracy with state-of-the-art classical methods, especially when the number of qubits and re-uploading blocks is increased.
- Score: 1.2885961238169932
- License:
- Abstract: Accurate traffic forecasting plays a crucial role in modern Intelligent Transportation Systems (ITS), as it enables real-time traffic flow management, reduces congestion, and improves the overall efficiency of urban transportation networks. With the rise of Quantum Machine Learning (QML), it has emerged a new paradigm possessing the potential to enhance predictive capabilities beyond what classical machine learning models can achieve. In the present work we pursue a heuristic approach to explore the potential of QML, and focus on a specific transport issue. In particular, as a case study we investigate a traffic forecast task for a major urban area in Athens (Greece), for which we possess high-resolution data. In this endeavor we explore the application of Quantum Neural Networks (QNN), and, notably, we present the first application of quantum data re-uploading in the context of transport forecasting. This technique allows quantum models to better capture complex patterns, such as traffic dynamics, by repeatedly encoding classical data into a quantum state. Aside from providing a prediction model, we spend considerable effort in comparing the performance of our hybrid quantum-classical neural networks with classical deep learning approaches. Our results show that hybrid models achieve competitive accuracy with state-of-the-art classical methods, especially when the number of qubits and re-uploading blocks is increased. While the classical models demonstrate lower computational demands, we provide evidence that increasing the complexity of the quantum model improves predictive accuracy. These findings indicate that QML techniques, and specifically the data re-uploading approach, hold promise for advancing traffic forecasting models and could be instrumental in addressing challenges inherent in ITS environments.
Related papers
- QNN-VRCS: A Quantum Neural Network for Vehicle Road Cooperation Systems [2.7985570786346745]
This research integrates quantum computing techniques to enhance Vehicle Road Cooperation Systems (VRCS)
We propose an optimized Quantum Neural Network (QNN) to better handle the complexities of traffic data processing.
Empirical evaluations on two traffic datasets show that our model achieves superior classification accuracies of 97.42% and 84.08%.
arXiv Detail & Related papers (2024-12-17T09:20:08Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
We present the Quantum Kernel-Based Long short-memory (QK-LSTM) network, which integrates quantum kernel methods into classical LSTM architectures.
QK-LSTM captures intricate nonlinear dependencies and temporal dynamics with fewer trainable parameters.
arXiv Detail & Related papers (2024-12-12T01:16:52Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Exploring Quantum Neural Networks for Demand Forecasting [0.25128687379089687]
This paper presents an approach for training demand prediction models using quantum neural networks.
A classical recurrent neural network was used to compare the results.
They show a similar predictive capacity between the classical and quantum models.
arXiv Detail & Related papers (2024-10-19T13:01:31Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
This paper introduces a new method to transfer knowledge from classical to quantum neural networks using knowledge distillation.
We adapt classical convolutional neural network (CNN) architectures like LeNet and AlexNet to serve as teacher networks.
Quantum models achieve an average accuracy improvement of 0.80% on the MNIST dataset and 5.40% on the more complex Fashion MNIST dataset.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.