Multi-clue Consistency Learning to Bridge Gaps Between General and Oriented Object in Semi-supervised Detection
- URL: http://arxiv.org/abs/2407.05909v1
- Date: Mon, 8 Jul 2024 13:14:25 GMT
- Title: Multi-clue Consistency Learning to Bridge Gaps Between General and Oriented Object in Semi-supervised Detection
- Authors: Chenxu Wang, Chunyan Xu, Ziqi Gu, Zhen Cui,
- Abstract summary: We experimentally find three gaps between general and oriented object detection in semi-supervised learning.
We propose a Multi-clue Consistency Learning (MCL) framework to bridge these gaps.
Our proposed MCL can achieve state-of-the-art performance in the semi-supervised oriented object detection task.
- Score: 26.486535389258965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While existing semi-supervised object detection (SSOD) methods perform well in general scenes, they encounter challenges in handling oriented objects in aerial images. We experimentally find three gaps between general and oriented object detection in semi-supervised learning: 1) Sampling inconsistency: the common center sampling is not suitable for oriented objects with larger aspect ratios when selecting positive labels from labeled data. 2) Assignment inconsistency: balancing the precision and localization quality of oriented pseudo-boxes poses greater challenges which introduces more noise when selecting positive labels from unlabeled data. 3) Confidence inconsistency: there exists more mismatch between the predicted classification and localization qualities when considering oriented objects, affecting the selection of pseudo-labels. Therefore, we propose a Multi-clue Consistency Learning (MCL) framework to bridge gaps between general and oriented objects in semi-supervised detection. Specifically, considering various shapes of rotated objects, the Gaussian Center Assignment is specially designed to select the pixel-level positive labels from labeled data. We then introduce the Scale-aware Label Assignment to select pixel-level pseudo-labels instead of unreliable pseudo-boxes, which is a divide-and-rule strategy suited for objects with various scales. The Consistent Confidence Soft Label is adopted to further boost the detector by maintaining the alignment of the predicted results. Comprehensive experiments on DOTA-v1.5 and DOTA-v1.0 benchmarks demonstrate that our proposed MCL can achieve state-of-the-art performance in the semi-supervised oriented object detection task.
Related papers
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.
Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.
We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection [98.66771688028426]
We propose a Ambiguity-Resistant Semi-supervised Learning (ARSL) for one-stage detectors.
Joint-Confidence Estimation (JCE) is proposed to quantifies the classification and localization quality of pseudo labels.
ARSL effectively mitigates the ambiguities and achieves state-of-the-art SSOD performance on MS COCO and PASCAL VOC.
arXiv Detail & Related papers (2023-03-27T07:46:58Z) - Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [4.247967690041766]
Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc.
Current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes.
We propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree.
arXiv Detail & Related papers (2020-12-08T01:30:06Z) - AutoAssign: Differentiable Label Assignment for Dense Object Detection [94.24431503373884]
Auto COCO is an anchor-free detector for object detection.
It achieves appearance-aware through a fully differentiable weighting mechanism.
Our best model achieves 52.1% AP, outperforming all existing one-stage detectors.
arXiv Detail & Related papers (2020-07-07T14:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.