論文の概要: General collections demography model with multiple risks
- arxiv url: http://arxiv.org/abs/2407.01192v1
- Date: Mon, 1 Jul 2024 11:33:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:49:58.243719
- Title: General collections demography model with multiple risks
- Title(参考訳): 複数のリスクを伴う一般コレクション・デモグラフィーモデル
- Authors: Josep Grau-Bové, Miriam Andrews,
- Abstract要約: このモデルは、有害事象をシミュレートするために、ABCフレームワークのリスクパラメータに損傷関数を組み込む。
モデルの主な結果は、すべての複合分解プロセスの結果、コレクションの状態における崩壊である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This note presents an Agent-Based Model (ABM) with Monte Carlo sampling, designed to simulate the behaviour of a population of objects over time. The model incorporates damage functions with the risk parameters of the ABC framework to simulate adverse events. As a result, it combines continuous and probabilistic degradation. This hybrid approach allows us to study the emergent behavior of the system and explore the range of possible lifetimes of a collection. The main outcome of the model is the decay in condition of a collection as a consequence of all the combined degradation processes. The model is based on six hypotheses that are described for further testing. This paper presents a first attempt at an universal implementation of Collections Demography principles, with the hope that it will generate discussion and the identification of research gaps.
- Abstract(参考訳): このノートはモンテカルロサンプリングを用いたエージェントベースモデル(ABM)を示し、時間とともに物体の集団の振る舞いをシミュレートする。
このモデルは、有害事象をシミュレートするために、ABCフレームワークのリスクパラメータに損傷関数を組み込む。
その結果、連続的および確率的劣化が組み合わされる。
このハイブリッドアプローチにより、システムの創発的挙動を研究し、コレクションの寿命範囲を探索することができる。
モデルの主な結果は、すべての複合分解プロセスの結果、コレクションの状態における崩壊である。
このモデルは、さらなるテストのために記述された6つの仮説に基づいている。
本稿では,コレクション・デモグラフィーの原則を普遍的に実装するための最初の試みについて述べる。
関連論文リスト
- Probabilistic Modeling for Sequences of Sets in Continuous-Time [14.423456635520084]
設定値データを連続的にモデリングするための一般的なフレームワークを開発する。
また,そのようなモデルを用いて確率的クエリに答える推論手法も開発している。
論文 参考訳(メタデータ) (2023-12-22T20:16:10Z) - Unsupervised Probabilistic Models for Sequential Electronic Health
Records [3.8015092217142223]
モデルは、データの基盤構造をエンコードする遅延変数の階層化セットで構成されている。
我々は,北カリフォルニアのKaiser Permanente(カイザー・パーマネンテ)統合型ヘルスケアデリバリーシステムにおいて,医療を受ける被験者のエピソードデータに基づいて,このモデルを訓練する。
トレーニングされたモデルの結果として得られる特性は、これらの複雑で多面的なデータから新しい洞察を生み出す。
論文 参考訳(メタデータ) (2022-04-15T02:11:44Z) - BRIO: Bringing Order to Abstractive Summarization [107.97378285293507]
非決定論的分布を前提とした新しい学習パラダイムを提案する。
提案手法は, CNN/DailyMail (47.78 ROUGE-1) と XSum (49.07 ROUGE-1) のデータセット上で, 最新の結果が得られる。
論文 参考訳(メタデータ) (2022-03-31T05:19:38Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
本稿では, 医療データを調和させる構造因果モデル (SCM) に対して, 反実的推論を行う正規化フローに基づく手法を提案する。
我々は,この手法が最先端のアルゴリズムよりもドメイン間一般化に寄与することを示すために,複数の,大規模な実世界の医療データセットを評価した。
論文 参考訳(メタデータ) (2021-06-12T19:57:35Z) - A Twin Neural Model for Uplift [59.38563723706796]
Upliftは条件付き治療効果モデリングの特定のケースです。
相対リスクのベイズ解釈との関連性を利用して定義した新たな損失関数を提案する。
本提案手法は,シミュレーション設定の最先端と大規模ランダム化実験による実データとの競合性を示す。
論文 参考訳(メタデータ) (2021-05-11T16:02:39Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
機械学習の完全確率的(または生成的)モデルに基づく継続的学習のアプローチを提案する。
生成器と分類器の両方に対してガウス混合モデル(GMM)インスタンスを用いた擬似リハーサル手法を提案する。
我々は,GMRが,クラス増分学習問題に対して,非常に競合的な時間とメモリの複雑さで,最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-04-19T12:26:26Z) - Multipopulation mortality modelling and forecasting: The multivariate
functional principal component with time weightings approaches [3.450774887322348]
共同死亡モデルと複数個体群予測のための2つの新しいモデルを提案する。
最初の提案モデルは、独立した関数型データモデルをマルチ人口モデル設定に拡張する。
2番目の提案モデルは、予測精度の観点から、最初のモデルと現在のモデルよりも優れています。
論文 参考訳(メタデータ) (2021-02-18T21:01:58Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。