Leveraging Prompts in LLMs to Overcome Imbalances in Complex Educational Text Data
- URL: http://arxiv.org/abs/2407.01551v1
- Date: Sun, 28 Apr 2024 00:24:08 GMT
- Title: Leveraging Prompts in LLMs to Overcome Imbalances in Complex Educational Text Data
- Authors: Jeanne McClure, Machi Shimmei, Noboru Matsuda, Shiyan Jiang,
- Abstract summary: We explore the potential of Large Language Models (LLMs) with assertions to mitigate imbalances in educational datasets.
This issue is especially prominent in the education sector, where cognitive engagement levels among students show significant variation in their open responses.
- Score: 1.8280573037181356
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we explore the potential of Large Language Models (LLMs) with assertions to mitigate imbalances in educational datasets. Traditional models often fall short in such contexts, particularly due to the complexity and nuanced nature of the data. This issue is especially prominent in the education sector, where cognitive engagement levels among students show significant variation in their open responses. To test our hypothesis, we utilized an existing technology for assertion-based prompt engineering through an 'Iterative - ICL PE Design Process' comparing traditional Machine Learning (ML) models against LLMs augmented with assertions (N=135). Further, we conduct a sensitivity analysis on a subset (n=27), examining the variance in model performance concerning classification metrics and cognitive engagement levels in each iteration. Our findings reveal that LLMs with assertions significantly outperform traditional ML models, particularly in cognitive engagement levels with minority representation, registering up to a 32% increase in F1-score. Additionally, our sensitivity study indicates that incorporating targeted assertions into the LLM tested on the subset enhances its performance by 11.94%. This improvement primarily addresses errors stemming from the model's limitations in understanding context and resolving lexical ambiguities in student responses.
Related papers
- Sensitivity Meets Sparsity: The Impact of Extremely Sparse Parameter Patterns on Theory-of-Mind of Large Language Models [55.46269953415811]
We identify ToM-sensitive parameters and show that perturbing as little as 0.001% of these parameters significantly degrades ToM performance.
Our results have implications for enhancing model alignment, mitigating biases, and improving AI systems designed for human interaction.
arXiv Detail & Related papers (2025-04-05T17:45:42Z) - Integration of Explainable AI Techniques with Large Language Models for Enhanced Interpretability for Sentiment Analysis [0.5120567378386615]
Interpretability remains a key difficulty in sentiment analysis with Large Language Models (LLMs)
This research introduces a technique that applies SHAP (Shapley Additive Explanations) by breaking down LLMs into components such as embedding layer,encoder,decoder and attention layer.
The method is evaluated using the Stanford Sentiment Treebank (SST-2) dataset, which shows how different sentences affect different layers.
arXiv Detail & Related papers (2025-03-15T01:37:54Z) - Forget What You Know about LLMs Evaluations - LLMs are Like a Chameleon [11.753349115726952]
Large language models (LLMs) often appear to excel on public benchmarks, but these high scores may mask an overreliance on dataset-specific surface cues.
We introduce the Chameleon Benchmark Overfit Detector (C-BOD), a meta-evaluation framework that distorts benchmark prompts.
By rephrasing inputs while preserving semantic content and labels, C-BOD exposes whether a model's performance is driven by memorized patterns.
arXiv Detail & Related papers (2025-02-11T10:43:36Z) - Bridging Interpretability and Robustness Using LIME-Guided Model Refinement [0.0]
Local Interpretable Model-Agnostic Explanations (LIME) systematically enhance model robustness.
Empirical evaluations on multiple benchmark datasets demonstrate that LIME-guided refinement not only improves interpretability but also significantly enhances resistance to adversarial perturbations and generalization to out-of-distribution data.
arXiv Detail & Related papers (2024-12-25T17:32:45Z) - Information Anxiety in Large Language Models [21.574677910096735]
Large Language Models (LLMs) have demonstrated strong performance as knowledge repositories.
We take the investigation further by conducting a comprehensive analysis of the internal reasoning and retrieval mechanisms of LLMs.
Our work focuses on three critical dimensions - the impact of entity popularity, the models' sensitivity to lexical variations in query formulation, and the progression of hidden state representations.
arXiv Detail & Related papers (2024-11-16T14:28:33Z) - Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting [40.78026627009521]
Reinforcement learning (RL) is a promising approach for aligning large language models (LLMs) knowledge with sequential decision-making tasks.
We propose a novel framework to analyze the sensitivity of LLMs to prompt formulations following RL training in a textual environment.
arXiv Detail & Related papers (2024-10-25T18:25:35Z) - Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs)
In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt.
Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead.
arXiv Detail & Related papers (2024-10-17T17:16:00Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
We present RUPBench, a benchmark designed to evaluate large language models (LLMs) across diverse reasoning tasks.
Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning.
By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns.
arXiv Detail & Related papers (2024-06-16T17:26:44Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks.
Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs.
We show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform simple aggregation strategies.
arXiv Detail & Related papers (2024-04-15T21:02:48Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs' proficiency in formulating a coherent and consistent knowledge representation from segmented narratives.
We argue that these shortcomings stem from the intrinsic nature of prevailing training objectives.
The findings from this study offer insights for developing more robust and reliable LLMs.
arXiv Detail & Related papers (2023-10-23T21:15:54Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.