論文の概要: Long-Term Prediction Accuracy Improvement of Data-Driven Medium-Range Global Weather Forecast
- arxiv url: http://arxiv.org/abs/2407.01598v1
- Date: Wed, 26 Jun 2024 02:06:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 20:11:58.677962
- Title: Long-Term Prediction Accuracy Improvement of Data-Driven Medium-Range Global Weather Forecast
- Title(参考訳): データ駆動型中距離気象予報の長期予測精度向上
- Authors: Yifan Hu, Fukang Yin, Weimin Zhang, Kaijun Ren, Junqiang Song, Kefeng Deng, Di Zhang,
- Abstract要約: 長期的反復予測を改善するために、Spherical Harmonic Neural Operator (SHNO)と呼ばれる普遍的神経オペレータが導入された。
SHNOは球面の高調波基底を用いて球面データの歪みを緩和し、異なるスケールでスプリアス相関によって生じるスペクトルバイアスを補正するためにゲート残留スペクトルアテンション(GRSA)を用いる。
本研究は,長期予測の精度を向上させるため,SHNOの利点と可能性を強調した。
- 参考スコア(独自算出の注目度): 5.284452133959932
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Long-term stability stands as a crucial requirement in data-driven medium-range global weather forecasting. Spectral bias is recognized as the primary contributor to instabilities, as data-driven methods difficult to learn small-scale dynamics. In this paper, we reveal that the universal mechanism for these instabilities is not only related to spectral bias but also to distortions brought by processing spherical data using conventional convolution. These distortions lead to a rapid amplification of errors over successive long-term iterations, resulting in a significant decline in forecast accuracy. To address this issue, a universal neural operator called the Spherical Harmonic Neural Operator (SHNO) is introduced to improve long-term iterative forecasts. SHNO uses the spherical harmonic basis to mitigate distortions for spherical data and uses gated residual spectral attention (GRSA) to correct spectral bias caused by spurious correlations across different scales. The effectiveness and merit of the proposed method have been validated through its application for spherical Shallow Water Equations (SWEs) and medium-range global weather forecasting. Our findings highlight the benefits and potential of SHNO to improve the accuracy of long-term prediction.
- Abstract(参考訳): 長期安定は、データ駆動の中距離世界天気予報において重要な要件である。
スペクトルバイアスは、小規模の力学を学ぶのが難しいデータ駆動手法として、不安定性の主要な要因として認識されている。
本稿では,これらの不安定性の普遍的なメカニズムが,スペクトルバイアスだけでなく,従来の畳み込みを用いた球面データ処理による歪みにも関係していることを明らかにする。
これらの歪みは、連続した長期反復のエラーを急速に増幅させ、予測精度を著しく低下させる。
この問題に対処するため、Spherical Harmonic Neural Operator (SHNO)と呼ばれる普遍的な神経オペレータを導入し、長期的反復予測を改善する。
SHNOは球面の高調波基底を用いて球面データの歪みを緩和し、異なるスケールでスプリアス相関によって生じるスペクトルバイアスを補正するためにゲート残留スペクトルアテンション(GRSA)を用いる。
提案手法の有効性と有効性は, 球状浅水方程式(SWE)と中距離大域気象予報の適用により検証された。
本研究は,長期予測の精度を向上させるため,SHNOの利点と可能性を強調した。
関連論文リスト
- HR-Extreme: A High-Resolution Dataset for Extreme Weather Forecasting [12.561873438789242]
本研究では,高解像度の極端気象事例を包含した包括的データセットを提案する。
HR-Extreme上での最先端ディープラーニングモデルと数値気象予測システム(NWP)の評価を行った。
論文 参考訳(メタデータ) (2024-09-27T16:20:51Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
メタグローバルローカル自動回帰(Meta-GLAR)と呼ばれる新しい予測手法を導入する。
それは、リカレントニューラルネットワーク(RNN)によって生成された表現からワンステップアヘッド予測へのマッピングをクローズドフォームで学習することで、各時系列に適応する。
本手法は,先行研究で報告されたサンプル外予測精度において,最先端の手法と競合する。
論文 参考訳(メタデータ) (2021-11-05T11:45:02Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
ディープラーニングを用いた高速重力波パラメータ推定のための前例のない精度を示す。
LIGO-Virgo Gravitational-Wave Transient Catalogから8つの重力波事象を解析した。
標準推論符号と非常に密接な定量的な一致を見いだすが、推定時間がO(day)から1イベントあたり1分に短縮される。
論文 参考訳(メタデータ) (2021-06-23T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。