論文の概要: Data-Driven Forecasting of High-Dimensional Transient and Stationary Processes via Space-Time Projection
- arxiv url: http://arxiv.org/abs/2503.23686v1
- Date: Mon, 31 Mar 2025 03:36:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:32:27.675815
- Title: Data-Driven Forecasting of High-Dimensional Transient and Stationary Processes via Space-Time Projection
- Title(参考訳): 時空間投影による高次元過渡・定常過程のデータ駆動予測
- Authors: Oliver T. Schmidt,
- Abstract要約: 時空間投影(STP)は,高次元および時間分解データに対するデータ駆動予測手法として導入された。
この方法は、後流と予測間隔の両方からなる予測水平線にまたがるトレーニングデータから、拡張時空間固有モードを算出する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Space-Time Projection (STP) is introduced as a data-driven forecasting approach for high-dimensional and time-resolved data. The method computes extended space-time proper orthogonal modes from training data spanning a prediction horizon comprising both hindcast and forecast intervals. Forecasts are then generated by projecting the hindcast portion of these modes onto new data, simultaneously leveraging their orthogonality and optimal correlation with the forecast extension. Rooted in Proper Orthogonal Decomposition (POD) theory, dimensionality reduction and time-delay embedding are intrinsic to the approach. For a given ensemble and fixed prediction horizon, the only tunable parameter is the truncation rank--no additional hyperparameters are required. The hindcast accuracy serves as a reliable indicator for short-term forecast accuracy and establishes a lower bound on forecast errors. The efficacy of the method is demonstrated using two datasets: transient, highly anisotropic simulations of supernova explosions in a turbulent interstellar medium, and experimental velocity fields of a turbulent high-subsonic engineering flow. In a comparative study with standard Long Short-Term Memory (LSTM) neural networks--acknowledging that alternative architectures or training strategies may yield different outcomes--the method consistently provided more accurate forecasts. Considering its simplicity and robust performance, STP offers an interpretable and competitive benchmark for forecasting high-dimensional transient and chaotic processes, relying purely on spatiotemporal correlation information.
- Abstract(参考訳): 時空間投影(STP)は,高次元および時間分解データに対するデータ駆動予測手法として導入された。
この方法は、後流と予測間隔の両方からなる予測地平線にまたがるトレーニングデータから、拡張時空間固有直交モードを算出する。
そして、これらのモードのヒンドキャスト部分を新しいデータに投影し、その直交性と予測拡張との最適相関を同時に活用することで予測を生成する。
固有直交分解(POD)理論では、次元の減少と時間遅延埋め込みはアプローチに固有のものである。
与えられたアンサンブルと固定された予測水平線に対して、調整可能なパラメータはトランケーションランクのみであり、追加のハイパーパラメータは不要である。
ヒンドキャスト精度は、短期予測精度の信頼性指標として機能し、予測誤差の低い境界を確立する。
本手法の有効性は, 乱流星間物質中における超新星爆発の過渡的, 高い異方性シミュレーションと, 乱流高音速工学流れの実験速度場という2つのデータセットを用いて実証された。
標準的なLong Short-Term Memory (LSTM) ニューラルネットワークとの比較研究では、代替アーキテクチャやトレーニング戦略が異なる結果をもたらす可能性があることを認めた。
単純で堅牢な性能を考えると、STPは時空間相関情報に純粋に依存する高次元の過渡的およびカオス的プロセスを予測するための解釈可能かつ競合的なベンチマークを提供する。
関連論文リスト
- Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
混合モデルとSeq2seqに基づくニューラルネットワークの予測および特徴抽出機能を活用するデータ駆動学習フレームワークを提案する。
このフレームワークでトレーニングした後、学習したモデルは長期予測精度を大幅に向上させることができる。
提案手法の精度と有効性は,予測された軌道と基礎的真実とを比較して評価する。
論文 参考訳(メタデータ) (2024-09-25T21:08:25Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションで例外的な効果を発揮している。
大規模グラフの重大化は,GNNによるリアルタイム推論において重要な課題となる。
本稿では,オンライン伝搬フレームワークと2つの新しいノード適応伝搬手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T05:03:00Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
グラフニューラルネットワーク(GNN)は、幅広いアプリケーションで優れた性能を示している。
既存のスケーラブルなGNNは、線形伝搬を利用して特徴を前処理し、トレーニングと推論の手順を高速化する。
本稿では,そのトポロジ情報に基づいて各ノードに対してパーソナライズされた伝搬順序を生成する適応的伝搬順序法を提案する。
論文 参考訳(メタデータ) (2022-11-01T14:38:18Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
リアルタイムデータに基づく高速更新は、プレドリルモデルで高い不確実性を持つ複雑な貯水池での掘削に不可欠である。
本稿では, フラビアル継承の地質学的に一貫した2次元断面を再現するためのGAN(generative adversarial Deep Neural Network)を提案する。
この手法は不確実性を低減し, 掘削ビットより500m先にある主要な地質特性を正確に予測する。
論文 参考訳(メタデータ) (2022-07-04T12:52:38Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
Neural Networks for Traffic Forecasting [2.088376060651494]
本稿では,短期交通予測のための最先端手法である拡散畳み込みリカレントニューラルネットワーク(DCRNN)に注目した。
我々はDCRNNの不確実性を定量化するスケーラブルなディープアンサンブル手法を開発した。
我々の汎用的かつスケーラブルなアプローチは、現在最先端のベイズ的手法や、多くの一般的な頻繁な手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-04T16:10:55Z) - N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting [17.53378788483556]
長期的な予測に苦しむ2つの一般的な課題は、予測のボラティリティとその計算複雑性である。
N-HiTSは,新しい階層型データサンプリング手法とマルチレートデータサンプリング手法を導入することで,両課題に対処するモデルである。
我々は,N-HiTSの最先端長軸予測法に対する利点を実証的に評価する。
論文 参考訳(メタデータ) (2022-01-30T17:52:19Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
本稿では,テンソルに基づく予測に焦点をあて,予測を改善するためのいくつかの実践的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルを提案する。
短期予測のために,テンソルクラスタリングに基づくテンソル補完を行い,過度に単純化され精度が保証されるのを避けることを提案する。
論文 参考訳(メタデータ) (2020-04-23T08:30:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。