Edge-DIRECT: A Deep Reinforcement Learning-based Method for Solving Heterogeneous Electric Vehicle Routing Problem with Time Window Constraints
- URL: http://arxiv.org/abs/2407.01615v1
- Date: Fri, 28 Jun 2024 03:18:12 GMT
- Title: Edge-DIRECT: A Deep Reinforcement Learning-based Method for Solving Heterogeneous Electric Vehicle Routing Problem with Time Window Constraints
- Authors: Arash Mozhdehi, Mahdi Mohammadizadeh, Xin Wang,
- Abstract summary: This article studies the heterogeneous electric vehicle routing problem with time-window constraints (HEVRPTW)
We propose a DRL-based approach, named Edge-enhanced Dual attentIon encoderR and feature-EnhanCed dual aTtention decoder (Edge-DIRECT)
Experimental results based on two real-world datasets reveal that Edge-DIRECT outperforms a state-of-the-art DRL-based method and a well-established approach in solution quality and execution time.
- Score: 4.852613028421959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In response to carbon-neutral policies in developed countries, electric vehicles route optimization has gained importance for logistics companies. With the increasing focus on customer expectations and the shift towards more customer-oriented business models, the integration of delivery time-windows has become essential in logistics operations. Recognizing the critical nature of these developments, this article studies the heterogeneous electric vehicle routing problem with time-window constraints (HEVRPTW). To solve this variant of vehicle routing problem (VRP), we propose a DRL-based approach, named Edge-enhanced Dual attentIon encoderR and feature-EnhanCed dual aTtention decoder (Edge-DIRECT). Edge-DIRECT features an extra graph representation, the node connectivity of which is based on the overlap of customer time-windows. Edge-DIRECT's self-attention encoding mechanism is enhanced by exploiting the energy consumption and travel time between the locations. To effectively account for the heterogeneity of the EVs' fleet, a dual attention decoder has been introduced. Experimental results based on two real-world datasets reveal that Edge-DIRECT outperforms a state-of-the-art DRL-based method and a well-established heuristic approach in solution quality and execution time. Furthermore, it exhibits competitive performance when compared to another leading heuristic method.
Related papers
- Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
We explore the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making.
The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks.
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation [28.47670676456068]
We introduce the use of Reconfigurable Intelligent Surfaces (RIS), which provide alternative communication pathways to assist vehicular communication.
We propose an innovative deep reinforcement learning (DRL) framework that combines the Deep Deterministic Policy Gradient (DDPG) algorithm for optimizing RIS phase-shift coefficients and the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm for optimizing the power allocation of vehicle user (VU)
Simulation results show that our proposed scheme outperforms the traditional centralized DDPG, Twin Delayed Deep Deterministic Policy Gradient (TD3) and some typical schemes.
arXiv Detail & Related papers (2024-07-18T03:18:59Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Spatial-Temporal Generative AI for Traffic Flow Estimation with Sparse Data of Connected Vehicles [48.32593099620544]
Traffic flow estimation (TFE) is crucial for intelligent transportation systems.
This paper introduces a novel and cost-effective TFE framework that leverages sparse,temporal generative artificial intelligence (GAI) framework.
Within this framework, the conditional encoder mines spatial-temporal correlations in the initial TFE results.
arXiv Detail & Related papers (2024-07-10T20:26:04Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
Trajectory planning aims to produce a globally optimal route for Autonomous Passenger Vehicles.
Existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories.
We augment this model by higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk.
arXiv Detail & Related papers (2023-09-25T22:30:18Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
This paper presents a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO)
Experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature.
arXiv Detail & Related papers (2023-06-04T09:18:02Z) - A Deep RL Approach on Task Placement and Scaling of Edge Resources for Cellular Vehicle-to-Network Service Provisioning [6.756220853104791]
We tackle the interdependent problems of service task placement and scaling of edge resources.
We propose a new Deep Reinforcement Learning (DRL) approach that operates in hybrid action spaces.
We evaluate the performance of DHPG using simulations with a real-world C-V2N traffic dataset.
arXiv Detail & Related papers (2023-05-16T22:19:19Z) - Online V2X Scheduling for Raw-Level Cooperative Perception [21.099819062731463]
Cooperative perception of connected vehicles comes to the rescue when the field of view restricts stand-alone intelligence.
We present a model of raw-level cooperative perception and formulate the energy minimization problem of sensor sharing scheduling.
We propose an online learning-based algorithm with logarithmic performance loss, achieving a decent trade-off between exploration and exploitation.
arXiv Detail & Related papers (2022-02-12T15:16:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.