論文の概要: Normalization and effective learning rates in reinforcement learning
- arxiv url: http://arxiv.org/abs/2407.01800v1
- Date: Mon, 1 Jul 2024 20:58:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 17:23:15.300679
- Title: Normalization and effective learning rates in reinforcement learning
- Title(参考訳): 強化学習における正規化と効果的な学習率
- Authors: Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado van Hasselt, Razvan Pascanu, Will Dabney,
- Abstract要約: 正規化層は近年,深層強化学習と連続学習文学においてルネッサンスを経験している。
正規化は、ネットワークパラメータのノルムにおける成長と効果的な学習速度における崩壊の間の等価性という、微妙だが重要な副作用をもたらすことを示す。
そこで本研究では,正規化・プロジェクトと呼ぶ単純な再パラメータ化により,学習率を明示的にする手法を提案する。
- 参考スコア(独自算出の注目度): 52.59508428613934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature, with several works highlighting diverse benefits such as improving loss landscape conditioning and combatting overestimation bias. However, normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate. This becomes problematic in continual learning settings, where the resulting effective learning rate schedule may decay to near zero too quickly relative to the timescale of the learning problem. We propose to make the learning rate schedule explicit with a simple re-parameterization which we call Normalize-and-Project (NaP), which couples the insertion of normalization layers with weight projection, ensuring that the effective learning rate remains constant throughout training. This technique reveals itself as a powerful analytical tool to better understand learning rate schedules in deep reinforcement learning, and as a means of improving robustness to nonstationarity in synthetic plasticity loss benchmarks along with both the single-task and sequential variants of the Arcade Learning Environment. We also show that our approach can be easily applied to popular architectures such as ResNets and transformers while recovering and in some cases even slightly improving the performance of the base model in common stationary benchmarks.
- Abstract(参考訳): 正規化レイヤは最近、深層強化学習と連続学習文学のルネッサンスを経験しており、損失景観条件の改善や過大評価バイアスとの闘いなど、様々な利点を浮き彫りにしている。
しかし、正規化は、ネットワークパラメータのノルムにおける成長と効果的な学習速度における崩壊の間の等価性という、微妙だが重要な副作用をもたらす。
これは、学習の時間スケールに対して、結果の効果的な学習率スケジュールがほぼゼロに近づきすぎるような連続的な学習環境において問題となる。
そこで本研究では,正規化レイヤーの挿入と重みプロジェクションを併用し,効果的な学習率をトレーニング中も一定に保ちながら,学習率を明確化することを提案する。
この技術は、深層強化学習における学習率スケジュールをよりよく理解するための強力な分析ツールであり、アーケード学習環境の単一タスクおよび逐次変異とともに、合成可塑性損失ベンチマークにおける非定常性に対する堅牢性を改善する手段である。
また,本手法はResNetsやTransformerなどの一般的なアーキテクチャにも容易に適用可能であることを示す。
関連論文リスト
- Learning Continually by Spectral Regularization [49.37215293091139]
可塑性の喪失は、ニューラルネットワークが学習中にトレーニングが困難になる現象である。
連続学習アルゴリズムは、ネットワークのトレーニング性を維持しながら、予測性能を良好に保ちながら、この効果を軽減しようとしている。
論文 参考訳(メタデータ) (2024-06-10T21:34:43Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
対人学習、コントラスト学習、拡散認知学習、通常の再構成学習といった技術が標準となっている。
この研究は、ニューラルネットワークの学習プロセスを強化するために、事前学習技術と微調整戦略の利点を解明することを目的としている。
論文 参考訳(メタデータ) (2024-05-29T15:44:51Z) - Loss Dynamics of Temporal Difference Reinforcement Learning [36.772501199987076]
線形関数近似器を用いた値関数の時間差学習のためのケースラーニング曲線について検討した。
本研究では,学習力学と台地が特徴構造,学習率,割引係数,報酬関数にどのように依存するかを検討する。
論文 参考訳(メタデータ) (2023-07-10T18:17:50Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
ディープラーニングモデルを非定常環境に適用することの本質的な困難さは、ニューラルネットワークの実際のタスクへの適用性を制限している。
ネットワークの事前学習部分の更新を回避し、通常の分類ヘッドだけでなく、新たに導入した学習可能なパラメータのセットも学習することで、微調整手順をより効果的にするための新しい戦略を提案する。
論文 参考訳(メタデータ) (2023-06-05T15:11:59Z) - Deep Active Learning by Leveraging Training Dynamics [57.95155565319465]
本稿では,学習力学を最大化するためにサンプルを選択する理論駆動型深層能動学習法(Dynamical)を提案する。
動的学習は、他のベースラインを一貫して上回るだけでなく、大規模なディープラーニングモデルでもうまくスケール可能であることを示す。
論文 参考訳(メタデータ) (2021-10-16T16:51:05Z) - A Loss Curvature Perspective on Training Instability in Deep Learning [28.70491071044542]
学習力学における損失の曲率の影響を理解するため,多くの分類課題における損失ヘッセンの進化について検討した。
条件付けの観点から,学習率のウォームアップはバッチ正規化と同じくらいのトレーニング安定性を向上できることを示した。
論文 参考訳(メタデータ) (2021-10-08T20:25:48Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
教官が特権情報にアクセスして意思決定を行う場合、この情報は模倣学習中に疎外されることを示す。
本稿では,このギャップに対処するため,適応的不規則化(ADVISOR)を提案する。
ADVISORは、トレーニング中の模倣と報酬に基づく強化学習損失を動的に重み付け、模倣と探索をオンザフライで切り替えることを可能にする。
論文 参考訳(メタデータ) (2020-07-23T17:59:57Z) - Understanding the Role of Training Regimes in Continual Learning [51.32945003239048]
破滅的な忘れは、ニューラルネットワークのトレーニングに影響を与え、複数のタスクを逐次学習する能力を制限する。
本研究では,タスクの局所的なミニマを拡大するトレーニング体制の形成に及ぼすドロップアウト,学習速度の低下,バッチサイズの影響について検討した。
論文 参考訳(メタデータ) (2020-06-12T06:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。