論文の概要: Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach
- arxiv url: http://arxiv.org/abs/2410.12598v1
- Date: Wed, 16 Oct 2024 14:15:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:36.868249
- Title: Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach
- Title(参考訳): 深層強化学習のための動的学習速度:バンドアプローチ
- Authors: Henrique Donâncio, Antoine Barrier, Leah F. South, Florence Forbes,
- Abstract要約: 深層強化学習(LRRL)のための動的学習率を提案する。
LRRLは、トレーニング中のエージェントのパフォーマンスに基づいて学習率を選択するメタラーニングアプローチである。
実験の結果,LRRLは深部RLアルゴリズムの性能を大幅に向上できることが示された。
- 参考スコア(独自算出の注目度): 0.9549646359252346
- License:
- Abstract: In Deep Reinforcement Learning models trained using gradient-based techniques, the choice of optimizer and its learning rate are crucial to achieving good performance: higher learning rates can prevent the model from learning effectively, while lower ones might slow convergence. Additionally, due to the non-stationarity of the objective function, the best-performing learning rate can change over the training steps. To adapt the learning rate, a standard technique consists of using decay schedulers. However, these schedulers assume that the model is progressively approaching convergence, which may not always be true, leading to delayed or premature adjustments. In this work, we propose dynamic Learning Rate for deep Reinforcement Learning (LRRL), a meta-learning approach that selects the learning rate based on the agent's performance during training. LRRL is based on a multi-armed bandit algorithm, where each arm represents a different learning rate, and the bandit feedback is provided by the cumulative returns of the RL policy to update the arms' probability distribution. Our empirical results demonstrate that LRRL can substantially improve the performance of deep RL algorithms.
- Abstract(参考訳): 勾配に基づく手法を用いて訓練された深層強化学習モデルでは、最適化器の選択とその学習速度は優れた性能を達成するために不可欠である。
さらに、目的関数の非定常性のため、最高の学習率がトレーニングステップによって変化する可能性がある。
学習率に適応するため、標準手法は減衰スケジューラを用いる。
しかし、これらのスケジューラはモデルが徐々に収束に近づいていると仮定し、それは必ずしも真実ではないかもしれない。
本研究では,学習中のエージェントのパフォーマンスに基づいて学習率を選択するメタ学習手法である深層強化学習(LRRL)の動的学習率を提案する。
LRRLは、各アームが異なる学習率を表すマルチアームのバンディットアルゴリズムに基づいており、そのバンディットフィードバックは、アームの確率分布を更新するRLポリシーの累積回帰によって提供される。
実験の結果,LRRLは深部RLアルゴリズムの性能を大幅に向上できることが示された。
関連論文リスト
- Normalization and effective learning rates in reinforcement learning [52.59508428613934]
正規化層は近年,深層強化学習と連続学習文学においてルネッサンスを経験している。
正規化は、ネットワークパラメータのノルムにおける成長と効果的な学習速度における崩壊の間の等価性という、微妙だが重要な副作用をもたらすことを示す。
そこで本研究では,正規化・プロジェクトと呼ぶ単純な再パラメータ化により,学習率を明示的にする手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T20:58:01Z) - Symmetric Reinforcement Learning Loss for Robust Learning on Diverse Tasks and Model Scales [13.818149654692863]
強化学習(RL)トレーニングは、移動目標や高勾配分散などの要因により本質的に不安定である。
本研究では,雑音データに対する教師付き学習から逆クロスエントロピー(RCE)を適用し,対称的なRL損失を定義することにより,RLトレーニングの安定性を向上させる。
論文 参考訳(メタデータ) (2024-05-27T19:28:33Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
強化学習(Reinforcement Learning, RL)は、教師付き学習とは本質的に異なり、実際、これらの学習は単純なRLタスクでもうまく機能しない。
エージェント勾配分布は非独立で同一分布であり、非効率なメタトレーニングをもたらす。
おもちゃのタスクでしか訓練されていないが、我々の学習はブラックスの目に見えない複雑なタスクを一般化できることを示した。
論文 参考訳(メタデータ) (2023-02-03T00:11:02Z) - Unbiased and Efficient Self-Supervised Incremental Contrastive Learning [31.763904668737304]
本稿では,新たなIncremental InfoNCE(NCE-II)損失関数からなる自己教師型Incremental Contrastive Learning(ICL)フレームワークを提案する。
ICLは最大16.7倍のトレーニングスピードアップと16.8倍の高速収束を実現している。
論文 参考訳(メタデータ) (2023-01-28T06:11:31Z) - Learning Rate Perturbation: A Generic Plugin of Learning Rate Schedule
towards Flatter Local Minima [40.70374106466073]
LEAP(LEArning Rate Perturbation)と呼ばれる一般学習率スケジュールプラグインを提案する。
LEAPは、学習率に一定の摂動を導入することにより、モデルトレーニングを改善するために、様々な学習率スケジュールに適用することができる。
LEAPを用いたトレーニングにより、多様なデータセット上での様々なディープラーニングモデルの性能を向上させることができることを示す広範な実験を行う。
論文 参考訳(メタデータ) (2022-08-25T05:05:18Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Training Efficiency and Robustness in Deep Learning [2.6451769337566406]
ディープラーニングモデルのトレーニング効率と堅牢性を改善するためのアプローチについて検討する。
より情報的なトレーニングデータに基づく学習の優先順位付けは収束速度を高め、テストデータに対する一般化性能を向上させる。
トレーニングデータのサンプリングに対する冗長性を考慮した修正により、トレーニング速度が向上し、トレーニング信号の多様性を検出する効率的な方法が開発されていることを示す。
論文 参考訳(メタデータ) (2021-12-02T17:11:33Z) - Simplifying Deep Reinforcement Learning via Self-Supervision [51.2400839966489]
自己改善強化学習(Self-Supervised Reinforcement Learning, SSRL)は、純粋に監督された損失を伴うポリシーを最適化する単純なアルゴリズムである。
SSRLは、より安定した性能と実行時間の少ない現代アルゴリズムと驚くほど競合することを示す。
論文 参考訳(メタデータ) (2021-06-10T06:29:59Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - META-Learning Eligibility Traces for More Sample Efficient Temporal
Difference Learning [2.0559497209595823]
そこで本稿では,状態依存的な方法で,可視性トレースパラメータを調整するためのメタラーニング手法を提案する。
この適応は、更新対象の分布情報をオンラインで学習する補助学習者の助けを借りて達成される。
提案手法は,いくつかの前提条件下では,全体の目標誤差を最小限に抑えて,更新対象の全体的な品質を改善する。
論文 参考訳(メタデータ) (2020-06-16T03:41:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。