論文の概要: Research on target detection method of distracted driving behavior based on improved YOLOv8
- arxiv url: http://arxiv.org/abs/2407.01864v1
- Date: Tue, 2 Jul 2024 00:43:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 17:13:22.478088
- Title: Research on target detection method of distracted driving behavior based on improved YOLOv8
- Title(参考訳): 改良型YOLOv8に基づく逸脱運転行動の目標検出法に関する研究
- Authors: Shiquan Shen, Zhizhong Wu, Pan Zhang,
- Abstract要約: 本研究では,BOTNetモジュール,GAMアテンション機構,EIoU損失関数を統合することで,従来のYOLOv8モデルに基づく改良されたYOLOv8検出手法を提案する。
実験の結果, 精度は99.4%であり, 検出速度, 精度ともに良好であった。
- 参考スコア(独自算出の注目度): 6.405098280736171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of deep learning technology, the detection and classification of distracted driving behaviour requires higher accuracy. Existing deep learning-based methods are computationally intensive and parameter redundant, limiting the efficiency and accuracy in practical applications. To solve this problem, this study proposes an improved YOLOv8 detection method based on the original YOLOv8 model by integrating the BoTNet module, GAM attention mechanism and EIoU loss function. By optimising the feature extraction and multi-scale feature fusion strategies, the training and inference processes are simplified, and the detection accuracy and efficiency are significantly improved. Experimental results show that the improved model performs well in both detection speed and accuracy, with an accuracy rate of 99.4%, and the model is smaller and easy to deploy, which is able to identify and classify distracted driving behaviours in real time, provide timely warnings, and enhance driving safety.
- Abstract(参考訳): 深層学習技術の発達に伴い、注意をそらした運転行動の検出と分類はより正確である必要がある。
既存のディープラーニングベースの手法は、計算集約的でパラメータ冗長であり、実用的な応用における効率と精度を制限している。
そこで本研究では,BOTNetモジュール,GAMアテンション機構,EIoU損失関数を統合することで,従来のYOLOv8モデルに基づく改良YOLOv8検出手法を提案する。
特徴抽出とマルチスケール特徴融合戦略を最適化することにより、トレーニングと推論のプロセスが簡素化され、検出精度と効率が大幅に向上する。
実験結果から, 精度99.4%の精度で検出速度, 精度ともに良好に動作し, 運転行動の特定・分類, タイムリーな警告, 運転安全性の向上を実現した。
関連論文リスト
- P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving [0.0]
引き離された運転は重大な安全上の問題であり、世界中で多くの死者と負傷につながっている。
本研究では、注意をそらされた運転行動を検出するための効率的でリアルタイムな機械学習モデルの必要性に対処する。
リアルタイムオブジェクト検出システムを導入し、速度と精度の両方に最適化する。
論文 参考訳(メタデータ) (2024-10-21T02:56:44Z) - Cutting-Edge Detection of Fatigue in Drivers: A Comparative Study of Object Detection Models [0.0]
本研究は, YOLOv5, YOLOv6, YOLOv7, YOLOv8を含む, 近代的な物体検出アルゴリズムに基づく疲労検出システムの開発について述べる。
これらのモデルの性能を比較することで,運転者の疲労関連行動のリアルタイム検出の有効性を評価する。
この研究は、環境変動や検出精度といった課題に対処し、リアルタイム検出を強化するロードマップを提案する。
論文 参考訳(メタデータ) (2024-10-19T08:06:43Z) - YOLO-ELA: Efficient Local Attention Modeling for High-Performance Real-Time Insulator Defect Detection [0.0]
無人航空機からの絶縁体欠陥検出のための既存の検出方法は、複雑な背景や小さな物体と競合する。
本稿では,この課題に対処するため,新しい注目基盤アーキテクチャであるYOLO-ELAを提案する。
高分解能UAV画像による実験結果から,本手法は96.9% mAP0.5,リアルタイム検出速度74.63フレーム/秒を実現した。
論文 参考訳(メタデータ) (2024-10-15T16:00:01Z) - Innovative Deep Learning Techniques for Obstacle Recognition: A Comparative Study of Modern Detection Algorithms [0.0]
本研究では,高度なYOLOモデル,特にYOLOv8,YOLOv7,YOLOv6,YOLOv5を用いた障害物検出の包括的アプローチについて検討する。
その結果, YOLOv8は精度が向上し, 精度が向上した。
論文 参考訳(メタデータ) (2024-10-14T02:28:03Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Improved YOLOv5 network for real-time multi-scale traffic sign detection [4.5598087061051755]
本稿では,アダプティブアテンションモジュール (AAM) と機能拡張モジュール (FEM) を利用して特徴マップ生成の過程での情報損失を低減する機能ピラミッドモデル AF-FPN を提案する。
YOLOv5の本来の特徴ピラミッドネットワークをAF-FPNに置き換え、YOLOv5ネットワークのマルチスケールターゲットの検出性能を向上させる。
論文 参考訳(メタデータ) (2021-12-16T11:02:12Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。