論文の概要: Spatio-Temporal Graphical Counterfactuals: An Overview
- arxiv url: http://arxiv.org/abs/2407.01875v1
- Date: Tue, 2 Jul 2024 01:34:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 17:03:34.822186
- Title: Spatio-Temporal Graphical Counterfactuals: An Overview
- Title(参考訳): Spatio-Temporal Graphical Counterfactuals の概要
- Authors: Mingyu Kang, Duxin Chen, Ziyuan Pu, Jianxi Gao, Wenwu Yu,
- Abstract要約: 反現実は、人工知能がデータから知識を学習する上で、重要かつ困難なトピックである。
本研究の目的は,思考を比較し,異なる対実モデル,理論,アプローチについて議論することである。
- 参考スコア(独自算出の注目度): 11.616701619068804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual thinking is a critical yet challenging topic for artificial intelligence to learn knowledge from data and ultimately improve their performances for new scenarios. Many research works, including Potential Outcome Model and Structural Causal Model, have been proposed to realize it. However, their modelings, theoretical foundations and application approaches are usually different. Moreover, there is a lack of graphical approach to infer spatio-temporal counterfactuals, that considers spatial and temporal interactions between multiple units. Thus, in this work, our aim is to investigate a survey to compare and discuss different counterfactual models, theories and approaches, and further build a unified graphical causal frameworks to infer the spatio-temporal counterfactuals.
- Abstract(参考訳): 反現実的思考は、人工知能がデータから知識を学び、最終的には新しいシナリオのパフォーマンスを改善する上で、重要かつ難しいトピックである。
潜在的アウトカムモデルや構造因果モデルなど多くの研究が提案されている。
しかしながら、それらのモデリング、理論的基礎、応用アプローチは通常異なる。
さらに,複数単位間の空間的・時間的相互作用を考慮した時空間的反事実の推測には,グラフィカルなアプローチが欠如している。
そこで本研究では, 異なる反ファクトモデル, 理論, アプローチを比較検討し, さらに, 時空間の反ファクトを推定するための統一的なグラフィカル因果関係を構築することを目的とする。
関連論文リスト
- A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - Revisiting the Temporal Modeling in Spatio-Temporal Predictive Learning
under A Unified View [73.73667848619343]
UTEP(Unified S-Temporal Predictive Learning)は,マイクロテンポラリスケールとマクロテンポラリスケールを統合した再帰的および再帰的フリーな手法を再構築する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2023-10-09T16:17:42Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Interpretation of Time-Series Deep Models: A Survey [27.582644914283136]
本稿では,バックプロパゲーション,摂動,近似に基づく時系列モデルに対する多種多様なポストホック解釈手法を提案する。
また、人間の理解可能な情報がモデル内で設計される新しい解釈のカテゴリである、本質的に解釈可能なモデルにも焦点をあてたいと考えています。
論文 参考訳(メタデータ) (2023-05-23T23:43:26Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
大規模に多様なデータに基づいて事前訓練された基礎モデルは、幅広いビジョンと言語タスクにおいて異常な能力を示してきた。
ファンデーションモデルをトレーニングし、他のエージェントと対話し、長期的な推論を行うための新しいパラダイムが生まれている。
基礎モデルと意思決定の交わりにおける研究は、強力な新しいシステムを作るための大きな約束である。
論文 参考訳(メタデータ) (2023-03-07T18:44:07Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
解釈可能性の欠如、堅牢性、分布外一般化が、既存の視覚モデルの課題となっている。
人間レベルのエージェントの強い推論能力にインスパイアされた近年では、因果推論パラダイムの開発に多大な努力が注がれている。
本稿では,この新興分野を包括的に概観し,注目し,議論を奨励し,新たな因果推論手法の開発の急激さを先導することを目的とする。
論文 参考訳(メタデータ) (2022-04-26T02:22:28Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Counterfactual Temporal Point Processes [18.37409880250174]
我々は,Gumbel-Max構造因果モデルに基づく時間点過程のシンニングの因果モデルを構築した。
次に、与えられた代替強度関数の下で時間点過程の対実的実現をシミュレートする。
論文 参考訳(メタデータ) (2021-11-15T08:46:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。