論文の概要: CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications
- arxiv url: http://arxiv.org/abs/2407.01953v1
- Date: Tue, 2 Jul 2024 05:04:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 16:43:59.599448
- Title: CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications
- Title(参考訳): FinLLMチャレンジタスクにおけるCatMemo:金融アプリケーションにおけるデータフュージョンを用いた大規模言語モデルの微調整
- Authors: Yupeng Cao, Zhiyuan Yao, Zhi Chen, Zhiyang Deng,
- Abstract要約: IJCAI-2024 FinLLMの課題に対して,金融業務の3つの重要な領域におけるLLMの能力について検討した。
金融分類、財務文書要約、単一株式取引について検討する。
提案手法は,これらの多様なタスクを包括的かつ総合的に処理することを目的としており,LLMの多様かつ複雑な財務課題への対処能力の向上と意思決定能力の向上を図っている。
- 参考スコア(独自算出の注目度): 10.225210627594894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Large Language Models (LLMs) into financial analysis has garnered significant attention in the NLP community. This paper presents our solution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs within three critical areas of financial tasks: financial classification, financial text summarization, and single stock trading. We adopted Llama3-8B and Mistral-7B as base models, fine-tuning them through Parameter Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation (LoRA) approaches. To enhance model performance, we combine datasets from task 1 and task 2 for data fusion. Our approach aims to tackle these diverse tasks in a comprehensive and integrated manner, showcasing LLMs' capacity to address diverse and complex financial tasks with improved accuracy and decision-making capabilities.
- Abstract(参考訳): 大規模言語モデル(LLM)の財務分析への統合は、NLPコミュニティにおいて大きな注目を集めている。
IJCAI-2024 FinLLMの課題に対して,金融分類,財務文書要約,単一株式取引の3つの重要な分野におけるLCMの能力について検討した。
我々はLlama3-8BとMistral-7Bをベースモデルとして採用し,パラメータ最適化(PEFT)とローランド適応(LoRA)アプローチを用いて微調整を行った。
モデル性能を向上させるために,タスク1とタスク2のデータセットを組み合わせてデータ融合を行う。
提案手法は,これらの多様なタスクを包括的かつ総合的に処理することを目的としており,LLMの多様かつ複雑な財務課題への対処能力の向上と意思決定能力の向上を図っている。
関連論文リスト
- Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
大規模言語モデル(LLM)は高度な金融アプリケーションを持っているが、十分な財務知識がなく、テーブルや時系列データといったマルチモーダル入力に関わるタスクに苦労することが多い。
我々は、総合的な財務知識をテキスト、テーブル、時系列データに組み込む一連の金融LLMであるtextitOpen-FinLLMsを紹介する。
また、複雑な財務データ型を扱うために、1.43Mの画像テキスト命令で訓練されたマルチモーダルLLMであるFinLLaVAについても紹介する。
論文 参考訳(メタデータ) (2024-08-20T16:15:28Z) - L3iTC at the FinLLM Challenge Task: Quantization for Financial Text Classification & Summarization [2.111699987679628]
FinLLM Challenge Task 2024は、タスク1、ファイナンシャルテキスト分類、タスク2、ファイナンシャルテキスト要約の2つの重要な領域に焦点を当てた。
各タスクのパフォーマンスを最適化するために,複数の大規模言語モデル (LLM) を微調整した。
我々のモデルはF1スコア0.7543の財務分類タスクで3位を獲得し、公式試験データセットの財務要約タスクで6位を確保した。
論文 参考訳(メタデータ) (2024-08-06T08:25:49Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - D\'olares or Dollars? Unraveling the Bilingual Prowess of Financial LLMs
Between Spanish and English [67.48541936784501]
Tois'on de Oro は、英語とのスペイン語共同で、命令データセット、微調整 LLM 、および金融 LLM の評価ベンチマークを確立する最初のフレームワークである。
7つのタスクをカバーする15のデータセットから144万以上のスペイン語と英語のサンプルを含む、厳格にキュレートされたバイリンガル命令データセットを構築した。
FLARE-ESは9つのタスクをカバーする21のデータセットを持つ最初の総合的バイリンガル評価ベンチマークである。
論文 参考訳(メタデータ) (2024-02-12T04:50:31Z) - A Survey of Large Language Models in Finance (FinLLMs) [10.195778659105626]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクで顕著な機能を示している。
この調査は、FinLLMの歴史、テクニック、パフォーマンス、機会と課題を含む、包括的な概要を提供する。
ファイナンスにおけるAI研究を支援するために、アクセス可能なデータセットと評価ベンチマークのコレクションをGitHubにコンパイルします。
論文 参考訳(メタデータ) (2024-02-04T02:06:57Z) - Revolutionizing Finance with LLMs: An Overview of Applications and
Insights [47.11391223936608]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - Integrating Stock Features and Global Information via Large Language
Models for Enhanced Stock Return Prediction [5.762650600435391]
本稿では,大規模言語モデルと既存の定量的モデルを統合する上での課題を克服するために,2つのコンポーネントからなる新しいフレームワークを提案する。
我々はランク情報係数とリターンにおいて、特に中国A株市場における株価のみに依存したモデルと比較して、優れたパフォーマンスを示してきた。
論文 参考訳(メタデータ) (2023-10-09T11:34:18Z) - Large Language Models in Finance: A Survey [12.243277149505364]
大規模言語モデル(LLM)は、金融における人工知能応用の新しい可能性を開いた。
大規模言語モデル(LLM)の最近の進歩は、金融における人工知能応用の新しい可能性を開いた。
論文 参考訳(メタデータ) (2023-09-28T06:04:04Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。