The Epistemic Uncertainty Hole: an issue of Bayesian Neural Networks
- URL: http://arxiv.org/abs/2407.01985v1
- Date: Tue, 2 Jul 2024 06:54:46 GMT
- Title: The Epistemic Uncertainty Hole: an issue of Bayesian Neural Networks
- Authors: Mohammed Fellaji, Frédéric Pennerath,
- Abstract summary: We show that the evolution of "epistemic uncertainty metrics" regarding the model size and the size of the training set, goes against theoretical expectations.
This phenomenon, which we call "epistemic uncertainty hole", is all the more problematic as it undermines the entire applicative potential of BDL.
- Score: 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Deep Learning (BDL) gives access not only to aleatoric uncertainty, as standard neural networks already do, but also to epistemic uncertainty, a measure of confidence a model has in its own predictions. In this article, we show through experiments that the evolution of epistemic uncertainty metrics regarding the model size and the size of the training set, goes against theoretical expectations. More precisely, we observe that the epistemic uncertainty collapses literally in the presence of large models and sometimes also of little training data, while we expect the exact opposite behaviour. This phenomenon, which we call "epistemic uncertainty hole", is all the more problematic as it undermines the entire applicative potential of BDL, which is based precisely on the use of epistemic uncertainty. As an example, we evaluate the practical consequences of this uncertainty hole on one of the main applications of BDL, namely the detection of out-of-distribution samples
Related papers
- On the Calibration of Epistemic Uncertainty: Principles, Paradoxes and Conflictual Loss [3.8248583585487155]
Evidential uncertainty is produced by Deep Ensembles, Bayesian Deep Networks, or Evidential Deep Networks.
Although measurable, this form of uncertainty is difficult to calibrate on an objective basis.
We propose a regularization function for deep ensembles, called conflictual loss in line with the above requirements.
arXiv Detail & Related papers (2024-07-16T23:21:28Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution.
We introduce a theoretically grounded measure to overcome these limitations.
We find that our introduced measure behaves more reasonably in controlled synthetic tasks.
arXiv Detail & Related papers (2023-11-14T16:55:12Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
This paper presents preliminary results on uncertainty quantification for system identification with neural state-space models.
We frame the learning problem in a Bayesian probabilistic setting and obtain posterior distributions for the neural network's weights and outputs.
Based on the posterior, we construct credible intervals on the outputs and define a surprise index which can effectively diagnose usage of the model in a potentially dangerous out-of-distribution regime.
arXiv Detail & Related papers (2023-04-13T08:57:33Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.