PT symmetric fermionic particle oscillations in even dimensional representations
- URL: http://arxiv.org/abs/2407.02036v2
- Date: Wed, 02 Oct 2024 18:14:05 GMT
- Title: PT symmetric fermionic particle oscillations in even dimensional representations
- Authors: Leqian Chen, Sarben Sarkar,
- Abstract summary: We describe a novel class of quantum mechanical particle oscillations in both relativistic and non-relativistic systems.
The resulting quantum mechanical evolution is shown to be unitary and probability is conserved by the oscillations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a novel class of quantum mechanical particle oscillations in both relativistic and non-relativistic systems based on $PT$ symmetry and $T^2=-1$ (relevant for fermions), where $P$ is parity and $T$ is time reversal. The Hamiltonians are chosen at the outset to be self-adjoint with respect to a PT inner product. The quantum mechanical time evolution is based on a modified $CPT$ inner product constructed in terms of a suitable $C$ operator. The resulting quantum mechanical evolution is shown to be unitary and probability is conserved by the oscillations.
Related papers
- Zernike system revisited: imaginary gauge and Higgs oscillator [0.0]
We show that the non-reality of the classical Zernike Hamiltonian is an insignificant artifact of imaginary gauge.
The quantum counterpart of this canonical transformation is a similarity transformation mapping the system to the quantum Higgs oscillator.
arXiv Detail & Related papers (2025-04-22T08:55:07Z) - Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - A mechanical quantum memory for microwave photons [17.201524716152807]
We show strong coupling between a transmon superconductingbit and an long-lived mechanical oscillator.
The findings extend the exceptional storage to the quantum regime, putting them forward as compact bosonic elements in future applications.
arXiv Detail & Related papers (2024-12-11T01:21:09Z) - Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Spontaneous polarized phase transitions and symmetry breaking of an ultracold atomic ensemble in a Raman-assisted cavity [9.354561963143967]
We investigate an ensemble consisting of $N$ four-level atoms within an optical cavity coupled to the single cavity mode and external laser fields.
Some novel phases characterized by the phase differences between the polarized cavity field or the atomic spin excitation and the Raman laser are found analytically.
It is found that besides the continuous $U(1)$ and discrete $mathbbZ$ symmetries, the system also exhibits two reflection symmetries $sigma_v$s, a central symmetry $C$ in the abstract position-momentum representation, and a discrete reflection-time symmetry
arXiv Detail & Related papers (2024-08-19T16:10:47Z) - Discrete-coordinate crypto-Hermitian quantum system controlled by
time-dependent Robin boundary conditions [0.0]
unitary quantum mechanics formulated in non-Hermitian (or, more precisely, in hiddenly Hermitian) interaction-picture representation is illustrated via an elementary $N$ by $N$ matrix Hamiltonian $H(t)$ mimicking a 1D-box system with physics controlled by time-dependent boundary conditions.
Our key message is that contrary to the conventional beliefs and in spite of the unitarity of the evolution of the system, neither its "Heisenbergian Hamiltonian" $Sigma(t)$ nor its "Schr"odingerian Hamiltonian" $G(
arXiv Detail & Related papers (2024-01-19T13:28:42Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - On the $\mathcal{P}\mathcal{T}$-symmetric parametric amplifier [0.0]
General time-dependent PT-symmetric parametric oscillators for unbroken parity and time reversal regimes are studied theoretically.
We have demostrated the time variation of the Wigner distribution for the system consisting of two spatially separated ground state of the TD-parametric amplifier.
arXiv Detail & Related papers (2023-05-20T19:45:22Z) - Linear Response for pseudo-Hermitian Hamiltonian Systems: Application to
PT-Symmetric Qubits [0.0]
We develop the linear response theory formulation suitable for application to various pHH systems.
We apply our results to two textitPT-symmetric non-Hermitian quantum systems.
arXiv Detail & Related papers (2022-06-18T10:05:30Z) - Anti-$\mathcal{PT}$ Transformations And Complex Non-Hermitian
$\mathcal{PT}$-Symmetric Superpartners [1.243080988483032]
We propose a new formalism for constructing complex non-Hermitian $mathcalPT$-symmetric superpartners.
The resulting potential is an unbroken super- and parity-time ($mathcalPT$)-symmetric shape-invariant potential.
This framework allows for the unification of various areas of physics, including classical optics and quantum mechanics.
arXiv Detail & Related papers (2021-08-29T12:34:47Z) - Quantum fluctuations on top of a $\mathcal{PT}$-symmetric Bose-Einstein
Condensate [0.0]
We investigate the effects of quantum fluctuations in a parity-time($mathcalPT$) symmetric two-species Bose-Einstein Condensate(BEC)
It is found that the $mathcalPT$-symmetry can be spontaneously broken by its Bogoliubov quasi-particles under quantum fluctuations.
arXiv Detail & Related papers (2021-08-10T02:00:49Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.