Integrate the Essence and Eliminate the Dross: Fine-Grained Self-Consistency for Free-Form Language Generation
- URL: http://arxiv.org/abs/2407.02056v1
- Date: Tue, 2 Jul 2024 08:38:31 GMT
- Title: Integrate the Essence and Eliminate the Dross: Fine-Grained Self-Consistency for Free-Form Language Generation
- Authors: Xinglin Wang, Yiwei Li, Shaoxiong Feng, Peiwen Yuan, Boyuan Pan, Heda Wang, Yao Hu, Kan Li,
- Abstract summary: We propose Fine-Grained Self-Consistency (FSC) to optimize output quality by effectively fine-grained consensus knowledge from multiple samples.
The effectiveness of FSC is demonstrated through extensive experiments on various tasks, including summarization, code generation, and mathematical reasoning.
- Score: 20.138831477848615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-consistency (SC), leveraging multiple samples from LLMs, shows significant gains on various reasoning tasks but struggles with free-form generation due to the difficulty of aggregating answers. Its variants, UCS and USC, rely on sample selection or voting mechanisms to improve output quality. These methods, however, face limitations due to their inability to fully utilize the nuanced consensus knowledge present within multiple candidate samples, often resulting in suboptimal outputs. We propose Fine-Grained Self-Consistency (FSC) to addresses these limitations by extracting and integrating segment-level commonalities from candidate samples, enhancing the performance of LLMs both in open-ended and reasoning tasks. Based on this, we present two additional strategies: candidate filtering, which enhances overall quality by identifying highly similar candidate sets, and merging, which reduces input token requirements by combining similar samples. The effectiveness of FSC is demonstrated through extensive experiments on various tasks, including summarization, code generation, and mathematical reasoning, using GPT-3.5-turbo and GPT-4. The results indicate significant improvements over baseline methods, showcasing the potential of FSC to optimize output quality by effectively synthesizing fine-grained consensus knowledge from multiple samples.
Related papers
- THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models [0.0]
Hallucination, the generation of factually incorrect content, is a growing challenge in Large Language Models.
This paper introduces THaMES, an integrated framework and library addressing this gap.
THaMES offers an end-to-end solution for evaluating and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-09-17T16:55:25Z) - Dynamic Self-Consistency: Leveraging Reasoning Paths for Efficient LLM Sampling [9.44858963874474]
Self-Consistency (SC) results in significant computational costs proportional to the number of samples generated.
We propose Reasoning-Aware Self-Consistency (RASC), an innovative early-stopping framework that adjusts the number of sample generations.
RASC significantly reduces sample usage by an average of 80% while maintaining or improving accuracy up to 5% compared to the original SC.
arXiv Detail & Related papers (2024-08-30T05:14:59Z) - PEDAL: Enhancing Greedy Decoding with Large Language Models using Diverse Exemplars [1.450405446885067]
Self-ensembling techniques with diverse reasoning paths have demonstrated remarkable performance gains in text generation with Large Language Models (LLMs)
We introduce PEDAL, a hybrid self-ensembling approach that combines the strengths of diverse exemplar based prompts and LLM based aggregation to achieve improvement in overall performance.
arXiv Detail & Related papers (2024-08-16T17:54:09Z) - Prompt Perturbation Consistency Learning for Robust Language Models [47.021022978847036]
Large language models (LLMs) have demonstrated impressive performance on a number of natural language processing tasks.
We show that fine-tuning sufficiently large LLMs can produce IC-SF performance comparable to discriminative models.
We propose an efficient mitigation approach, Prompt Perturbation Consistency Learning (PPCL), which works by regularizing the divergence between losses from clean and perturbed samples.
arXiv Detail & Related papers (2024-02-24T15:00:58Z) - Universal Self-Consistency for Large Language Model Generation [72.6761480346095]
Self-consistency with chain-of-thought prompting (CoT) has demonstrated remarkable performance gains on challenging tasks.
We propose Universal Self-Consistency (USC), which leverages large language models (LLMs) to select the most consistent answer.
arXiv Detail & Related papers (2023-11-29T02:07:09Z) - Enhancing Large Language Models in Coding Through Multi-Perspective Self-Consistency [127.97467912117652]
Large language models (LLMs) have exhibited remarkable ability in code generation.
However, generating the correct solution in a single attempt still remains a challenge.
We propose the Multi-Perspective Self-Consistency (MPSC) framework incorporating both inter- and intra-consistency.
arXiv Detail & Related papers (2023-09-29T14:23:26Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.