Integrate the Essence and Eliminate the Dross: Fine-Grained Self-Consistency for Free-Form Language Generation
- URL: http://arxiv.org/abs/2407.02056v1
- Date: Tue, 2 Jul 2024 08:38:31 GMT
- Title: Integrate the Essence and Eliminate the Dross: Fine-Grained Self-Consistency for Free-Form Language Generation
- Authors: Xinglin Wang, Yiwei Li, Shaoxiong Feng, Peiwen Yuan, Boyuan Pan, Heda Wang, Yao Hu, Kan Li,
- Abstract summary: We propose Fine-Grained Self-Consistency (FSC) to optimize output quality by effectively fine-grained consensus knowledge from multiple samples.
The effectiveness of FSC is demonstrated through extensive experiments on various tasks, including summarization, code generation, and mathematical reasoning.
- Score: 20.138831477848615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-consistency (SC), leveraging multiple samples from LLMs, shows significant gains on various reasoning tasks but struggles with free-form generation due to the difficulty of aggregating answers. Its variants, UCS and USC, rely on sample selection or voting mechanisms to improve output quality. These methods, however, face limitations due to their inability to fully utilize the nuanced consensus knowledge present within multiple candidate samples, often resulting in suboptimal outputs. We propose Fine-Grained Self-Consistency (FSC) to addresses these limitations by extracting and integrating segment-level commonalities from candidate samples, enhancing the performance of LLMs both in open-ended and reasoning tasks. Based on this, we present two additional strategies: candidate filtering, which enhances overall quality by identifying highly similar candidate sets, and merging, which reduces input token requirements by combining similar samples. The effectiveness of FSC is demonstrated through extensive experiments on various tasks, including summarization, code generation, and mathematical reasoning, using GPT-3.5-turbo and GPT-4. The results indicate significant improvements over baseline methods, showcasing the potential of FSC to optimize output quality by effectively synthesizing fine-grained consensus knowledge from multiple samples.
Related papers
- Diversified Sampling Improves Scaling LLM inference [31.18762591875725]
DivSampling is a novel and versatile sampling technique designed to enhance the diversity of candidate solutions.
Our theoretical analysis demonstrates that, under mild assumptions, the error rates of responses generated from diverse prompts are significantly lower compared to those produced by stationary prompts.
arXiv Detail & Related papers (2025-02-16T07:37:58Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
We use a novel synthetic data generation pipeline to generate 48,000 instruction unique-following prompts.
With our synthetic prompts, we use two preference dataset curation methods - rejection sampling (RS) and Monte Carlo Tree Search (MCTS)
Experiments reveal that shared prefixes in preference pairs, as generated by MCTS, provide marginal but consistent improvements.
High-contrast preference pairs generally outperform low-contrast pairs; however, combining both often yields the best performance.
arXiv Detail & Related papers (2024-12-18T15:38:39Z) - Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
We show how to leverage class text information to mitigate distribution drifts encountered by vision-language models (VLMs) during test-time inference.
We propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem.
Experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT.
arXiv Detail & Related papers (2024-11-26T00:15:37Z) - THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models [0.0]
Hallucination, the generation of factually incorrect content, is a growing challenge in Large Language Models.
This paper introduces THaMES, an integrated framework and library addressing this gap.
THaMES offers an end-to-end solution for evaluating and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-09-17T16:55:25Z) - Reasoning Aware Self-Consistency: Leveraging Reasoning Paths for Efficient LLM Sampling [9.44858963874474]
Self-Consistency mitigates hallucinations in Large Language Models (LLMs) by sampling multiple reasoning paths.
We introduce Reasoning-Aware Self-Consistency (RASC), a novel framework that enhances sampling efficiency and reasoning faithfulness.
arXiv Detail & Related papers (2024-08-30T05:14:59Z) - Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
We propose a systematic way to estimate the capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step.
Our work offers a comprehensive comparison of existing truncation sampling methods and serves as a practical user guideline for their parameter selection.
arXiv Detail & Related papers (2024-08-24T14:14:32Z) - Enhancing Large Language Models in Coding Through Multi-Perspective Self-Consistency [127.97467912117652]
Large language models (LLMs) have exhibited remarkable ability in code generation.
However, generating the correct solution in a single attempt still remains a challenge.
We propose the Multi-Perspective Self-Consistency (MPSC) framework incorporating both inter- and intra-consistency.
arXiv Detail & Related papers (2023-09-29T14:23:26Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.