論文の概要: MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning
- arxiv url: http://arxiv.org/abs/2010.03951v1
- Date: Mon, 5 Oct 2020 21:25:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 22:40:14.680527
- Title: MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning
- Title(参考訳): moldesigner:深層学習による効果的薬物のインタラクティブデザイン
- Authors: Kexin Huang, Tianfan Fu, Dawood Khan, Ali Abid, Ali Abdalla, Abubakar
Abid, Lucas M. Glass, Marinka Zitnik, Cao Xiao, Jimeng Sun
- Abstract要約: MolDesignerは、ドラッグ開発者のためのヒューマン・イン・ザ・ループ・ウェブ・ユーザ・インタフェース(UI)である。
開発者は、インターフェイスに薬物分子を描画することができる。
バックエンドでは、17以上の最先端のDLモデルが、薬物の有効性に不可欠な重要な指標の予測を生成する。
- 参考スコア(独自算出の注目度): 61.74958429818077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficacy of a drug depends on its binding affinity to the therapeutic
target and pharmacokinetics. Deep learning (DL) has demonstrated remarkable
progress in predicting drug efficacy. We develop MolDesigner, a
human-in-the-loop web user-interface (UI), to assist drug developers leverage
DL predictions to design more effective drugs. A developer can draw a drug
molecule in the interface. In the backend, more than 17 state-of-the-art DL
models generate predictions on important indices that are crucial for a drug's
efficacy. Based on these predictions, drug developers can edit the drug
molecule and reiterate until satisfaction. MolDesigner can make predictions in
real-time with a latency of less than a second.
- Abstract(参考訳): 薬物の有効性は治療標的と薬物動態との結合親和性に依存する。
深層学習(DL)は薬物効果の予測において顕著な進歩を示した。
我々は、薬物開発者がDL予測を利用してより効果的な薬物を設計するのを支援するために、Human-in-the-loop Webユーザインタフェース(UI)であるMollDesignerを開発した。
開発者はインターフェイスに薬物分子を描くことができる。
バックエンドでは、17以上の最先端のDLモデルが、薬物の有効性に不可欠な重要な指標の予測を生成する。
これらの予測に基づいて、薬物開発者は薬物分子を編集し、満足するまで繰り返すことができる。
MolDesignerは1秒未満のレイテンシでリアルタイムに予測を行うことができる。
関連論文リスト
- Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
薬物と薬物の相互作用は同時投与の有効性を損なう可能性がある。
従来のDDI予測の計算手法では、知識不足のため、新しい薬物の相互作用を捉えることができない可能性がある。
言語モデルに基づくDDI予測器と強化学習(RL)に基づく情報セレクタを用いたテキストDDIを提案する。
論文 参考訳(メタデータ) (2024-03-13T09:42:46Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - Emerging Opportunities of Using Large Language Models for Translation
Between Drug Molecules and Indications [6.832024637226738]
薬物分子とそれに対応する指標を翻訳する新しい課題を提案する。
表示からの分子の生成、またはその逆は、病気のより効率的なターゲティングを可能にする。
論文 参考訳(メタデータ) (2024-02-14T21:33:13Z) - GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction [2.523552067304274]
GraphCL-DTAは、薬物表現を学習する分子グラフのためのグラフコントラスト学習フレームワークである。
次に、薬物と標的表現の均一性を調整するために直接使用できる新しい損失関数を設計する。
上記のイノベーティブな要素の有効性は、2つの実際のデータセットで検証される。
論文 参考訳(メタデータ) (2023-07-18T06:01:37Z) - DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm [0.521420263116111]
薬物相乗効果予測のためのグラフニューラルネットワーク(textitGNN)モデルを提案する。
従来のモデルとは対照的に、我々のGNNベースのアプローチは、薬物のグラフ構造から直接タスク特異的な薬物表現を学習する。
我々の研究は、タスク固有の薬物表現を学習し、多様なデータセットを活用することが、薬物と薬物の相互作用とシナジーの理解を深めるための有望なアプローチであることを示唆している。
論文 参考訳(メタデータ) (2022-10-03T10:16:29Z) - Molecular Substructure-Aware Network for Drug-Drug Interaction
Prediction [10.157966744159491]
薬物の併用投与は薬物と薬物の相互作用(DDI)を引き起こす
薬物対の分子構造から潜在的DDIを効果的に予測する新しいモデルである分子サブストラクチャー・アウェア・ネットワーク(MSAN)を提案する。
論文 参考訳(メタデータ) (2022-08-24T02:06:21Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - Relational graph convolutional networks for predicting blood-brain
barrier penetration of drug molecules [12.041672273431994]
薬物分子のBBB透過能の評価は、脳薬物開発における重要なステップである。
関連グラフ畳み込みネットワーク(RGCN)を用いて,各薬剤の特徴だけでなく,薬物とタンパク質の関係も扱う。
この性能はすでに有望であり、BBB透過性の予測において、薬物-タンパク質/ドラッグ関係が重要な役割を担っていることを証明した。
論文 参考訳(メタデータ) (2021-07-04T15:56:02Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
医薬品の分子構造とDDIのモデルを明確に活用するために、SafeDrugというDDI制御可能な薬物推奨モデルを提案する。
ベンチマークデータセットでは、SafeDrugはDDIを19.43%削減し、Jaccardの推奨薬物と実際に処方された薬物の組み合わせの2.88%を改善します。
論文 参考訳(メタデータ) (2021-05-05T00:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。