論文の概要: Strategic Demand-Planning in Wireless Networks: Can Generative-AI Save Spectrum and Energy?
- arxiv url: http://arxiv.org/abs/2407.02292v2
- Date: Sun, 01 Dec 2024 11:31:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:09.475023
- Title: Strategic Demand-Planning in Wireless Networks: Can Generative-AI Save Spectrum and Energy?
- Title(参考訳): 無線ネットワークにおけるストラテジック・デマンド・プランニング:生成AIはスペクトルとエネルギーを節約できるか?
- Authors: Berk Çiloğlu, Görkem Berkay Koç, Afsoon Alidadi Shamsabadi, Metin Ozturk, Halim Yanikomeroglu,
- Abstract要約: 本稿では、需要ラベル付け、需要形成、需要再スケジューリングによる戦略的需要計画の概念を紹介する。
GenAIは、無線ネットワークにおける需要形成を容易にする強力なツールとして提案されている。
- 参考スコア(独自算出の注目度): 17.59973153669422
- License:
- Abstract: Generative-AI (GenAI), a novel technology capable of producing various types of outputs, including text, images, and videos, offers significant potential for wireless communications. This article introduces the concept of strategic demand-planning through demand-labeling, demand-shaping, and demand-rescheduling. Accordingly, GenAI is proposed as a powerful tool to facilitate demand-shaping in wireless networks. More specifically, GenAI is used to compress and convert the content of various types (e.g., from a higher bandwidth mode to a lower one, such as from a video to text), which subsequently enhances performance of wireless networks in various usage scenarios, such as cell-switching, user association and load balancing, interference management, as well as disasters and unusual gatherings. Therefore, GenAI can serve a function in saving energy and spectrum in wireless networks. With recent advancements in AI, including sophisticated algorithms like large language models and the development of more powerful hardware built exclusively for AI tasks, such as AI accelerators, the concept of demand-planning, particularly demand-shaping through GenAI, becomes increasingly relevant. Furthermore, recent efforts to make GenAI accessible on devices, such as user terminals, make the implementation of this concept even more straightforward and feasible.
- Abstract(参考訳): Generative-AI(GenAI)は、テキスト、画像、ビデオなど、様々な種類の出力を生成できる新しい技術であり、無線通信において大きな可能性を秘めている。
本稿では、需要ラベル付け、需要形成、需要再スケジューリングによる戦略的需要計画の概念を紹介する。
そのため、無線ネットワークにおける需要形成を容易にする強力なツールとして、GenAIが提案されている。
具体的には、GenAIは、セルスイッチング、ユーザアソシエーション、ロードバランシング、干渉管理、災害や異常な集合などの様々な利用シナリオにおいて、無線ネットワークの性能を向上させる様々なタイプのコンテンツ(例えば、ビデオからテキストへの高帯域幅モードから低帯域への変換)を圧縮・変換するために使用される。
したがって、GenAIは無線ネットワークにおけるエネルギーとスペクトルの節約に役立てることができる。
大規模言語モデルのような高度なアルゴリズムや、AIアクセラレータのようなAIタスク専用に開発されたより強力なハードウェアの開発など、AIの最近の進歩により、需要計画の概念、特にGenAIによる需要形成がますます重要になっている。
さらに、ユーザ端末などのデバイスでGenAIを利用できるようにしようとする最近の取り組みにより、この概念の実装はより簡単で実現可能になった。
関連論文リスト
- Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study [59.780800481241066]
Generative Artificial Intelligence (GenAI) は、無線データ拡張の効果的な代替手段である。
本稿では、無線ネットワークにおけるGenAI駆動型データ拡張の可能性と有効性について考察する。
本稿では,Wi-Fiジェスチャー認識のための一般化拡散モデルに基づくデータ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-13T05:15:25Z) - The Roles of Generative Artificial Intelligence in Internet of Electric Vehicles [65.14115295214636]
我々は特に、電気自動車のインターネット(IoEV)について検討し、GenAI for IoEVを4つの異なる層に分類する。
IoEVアプリケーションの各レイヤで使用されるさまざまなGenAI技術を紹介します。
GenAIモデルのトレーニングに利用可能なパブリックデータセットを要約する。
論文 参考訳(メタデータ) (2024-09-24T05:12:10Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - GenAINet: Enabling Wireless Collective Intelligence via Knowledge
Transfer and Reasoning [30.74259663690069]
無線ネットワークを介してGenAIエージェントを接続することは、集団知能の力を解き放つ可能性がある。
現在の無線ネットワークは「データパイプ」として設計されており、GenAIのパワーに対応・活用するには適していない。
本稿では,分散GenAIエージェントが任意のタスクを遂行するために知識を伝達するGenAINetフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-26T15:03:46Z) - At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers
in 6G Wireless Intelligence [11.847999494242387]
ジェネレーティブAI(Generative AI、ジェネレーティブAI)は、入力データの基盤となるデータ分布、パターン、特徴を識別できるジェネレーティブモデル(GM)である。
これにより、GenAIは、実世界のデータが不足し、不完全で、取得にコストがかかり、モデル化や理解が難しい、無線領域において重要な資産となる。
我々は、セマンティック/THz/ニアフィールド通信、ISAC、超大型アンテナアレイ、デジタルツイン、AI生成コンテンツサービス、モバイルエッジコンピューティングとエッジAI、敵対的ML、信頼に値する6Gネットワーク研究の先駆的な領域におけるGMの役割を概説する。
論文 参考訳(メタデータ) (2024-02-02T06:23:25Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
次世代無線ネットワーク(例:6G)は人工知能(AI)ネイティブである。
本稿では、新たな因果推論分野を基盤として、AIネイティブな無線ネットワークを構築するための新しいフレームワークを紹介する。
因果発見と表現によって対処できる無線ネットワークの課題をいくつか挙げる。
論文 参考訳(メタデータ) (2023-09-23T00:05:39Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - Large Generative AI Models for Telecom: The Next Big Thing? [7.36678071967351]
大型のGenAIモデルは、自律的無線ネットワークの新しい時代を開くことを想定している。
本稿では,大規模なGenAIモデルをTelecomドメインに統合することで実現可能な機会を広げることを目的としている。
論文 参考訳(メタデータ) (2023-06-17T03:45:00Z) - An Overview on Generative AI at Scale with Edge-Cloud Computing [28.98486923400986]
生成人工知能(GenAI)は、人間が生成したものに似た新しいコンテンツを生成する。
GenAIシステムの急速な開発は、インターネット上で膨大な量の新しいデータを生み出している。
エッジクラウドコンピューティングのパラダイムを活用することで、GenAIシステムを大規模に構築することは魅力的なことです。
論文 参考訳(メタデータ) (2023-06-02T06:24:15Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6Gはワイヤレスの進化を「コネクテッドモノ」から「コネクテッドインテリジェンス」に変革する
ディープラーニングとビッグデータ分析に基づくAIシステムは、膨大な計算と通信資源を必要とする。
エッジAIは、センサー、通信、計算、インテリジェンスをシームレスに統合する6Gの破壊的技術として際立っている。
論文 参考訳(メタデータ) (2021-11-24T11:47:16Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。