論文の概要: RVISA: Reasoning and Verification for Implicit Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2407.02340v1
- Date: Tue, 2 Jul 2024 15:07:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 14:56:27.090721
- Title: RVISA: Reasoning and Verification for Implicit Sentiment Analysis
- Title(参考訳): RVISA:不必要感性分析のための推論と検証
- Authors: Wenna Lai, Haoran Xie, Guandong Xu, Qing Li,
- Abstract要約: 暗黙の感情分析(ISA)は、表現に有能なキュー語が欠如していることで大きな課題となる。
本研究では,DO LLMの生成能力とED LLMの推論能力を利用した2段階推論フレームワークであるRVISAを提案する。
- 参考スコア(独自算出の注目度): 18.836998294161834
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With an increasing social demand for fine-grained sentiment analysis (SA), implicit sentiment analysis (ISA) poses a significant challenge with the absence of salient cue words in expressions. It necessitates reliable reasoning to understand how the sentiment is aroused and thus determine implicit sentiments. In the era of Large Language Models (LLMs), Encoder-Decoder (ED) LLMs have gained popularity to serve as backbone models for SA applications, considering impressive text comprehension and reasoning ability among diverse tasks. On the other hand, Decoder-only (DO) LLMs exhibit superior natural language generation and in-context learning capabilities. However, their responses may contain misleading or inaccurate information. To identify implicit sentiment with reliable reasoning, this study proposes RVISA, a two-stage reasoning framework that harnesses the generation ability of DO LLMs and the reasoning ability of ED LLMs to train an enhanced reasoner. Specifically, we adopt three-hop reasoning prompting to explicitly furnish sentiment elements as cues. The generated rationales are utilized to fine-tune an ED LLM into a skilled reasoner. Additionally, we develop a straightforward yet effective verification mechanism to ensure the reliability of the reasoning learning. We evaluated the proposed method on two benchmark datasets and achieved state-of-the-art results in ISA performance.
- Abstract(参考訳): 微粒な感情分析(SA)に対する社会的需要が増大する中、暗黙的な感情分析(ISA)は、表現に有能な口語が欠如していることで大きな課題となる。
感情がどのように刺激され、暗黙の感情が決定されるかを理解するためには、信頼できる推論が必要である。
LLM (Large Language Models) の時代、エンコーダ・デコーダ (ED) LLM は様々なタスクのテキスト理解と推論能力を考慮して、SAアプリケーションのバックボーンモデルとして人気を集めている。
一方、Decoder-only (DO) LLMは、優れた自然言語生成能力とコンテキスト内学習能力を示す。
しかし、その応答には誤った情報や不正確な情報が含まれる可能性がある。
そこで本研究では,DO LLMの生成能力とED LLMの推論能力を利用した2段階推論フレームワークであるRVISAを提案する。
具体的には、感情的要素を手がかりとして明確に表現することを促す3つのホップ推論を採用する。
生成された理性を利用してED LLMを熟練した理性体に微調整する。
さらに、推論学習の信頼性を確保するため、単純かつ効果的な検証機構を開発する。
提案手法を2つのベンチマークデータセット上で評価し,ISA性能の最先端化を実現した。
関連論文リスト
- Reasoning with Large Language Models, a Survey [2.831296564800826]
本稿では,LSMによるプロンプトベース推論の急速に進展する分野について概説する。
我々の分類学は、多段階推論の生成、評価、制御の異なる方法を特定します。
我々は, 自己改善, 自己回帰, 推論過程のいくつかのメタ能力が, プロンプトの司法的利用によって可能であることを発見した。
論文 参考訳(メタデータ) (2024-07-16T08:49:35Z) - Can Large Language Models Identify Authorship? [16.35265384114857]
大規模言語モデル(LLM)は、推論と問題解決の特別な能力を示している。
1) LLM はゼロショット・エンド・ツー・エンドのオーサシップ検証を効果的に行うことができるか?
2) LLM は,複数の候補作家(例えば,10,20)の著者を正確に帰属させることができるか?
論文 参考訳(メタデータ) (2024-03-13T03:22:02Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Inference to the Best Explanation in Large Language Models [6.037970847418495]
Inference to the Best Explanation (IBE) に関する哲学的な記述から着想を得た IBE-Eval を提案する。
IBE-Evalは、明示的な論理的特徴と言語的特徴を組み合わせることで、自然言語の説明の妥当性を推定する。
実験の結果、IBE-Evalは77%の精度で最良の説明を特定できることがわかった。
論文 参考訳(メタデータ) (2024-02-16T15:41:23Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Sentiment Analysis through LLM Negotiations [58.67939611291001]
感情分析の標準的なパラダイムは、単一のLCMに依存して、その決定を1ラウンドで行うことである。
本稿では,感情分析のためのマルチLLMネゴシエーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-03T12:35:29Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。