論文の概要: GCF: Graph Convolutional Networks for Facial Expression Recognition
- arxiv url: http://arxiv.org/abs/2407.02361v1
- Date: Tue, 2 Jul 2024 15:27:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 14:46:41.868063
- Title: GCF: Graph Convolutional Networks for Facial Expression Recognition
- Title(参考訳): GCF:表情認識のためのグラフ畳み込みネットワーク
- Authors: Hozaifa Kassab, Mohamed Bahaa, Ali Hamdi,
- Abstract要約: 表情認識のためのグラフ畳み込みネットワーク(CNN)を提案する。
GCFは、カスタムアーキテクチャまたは事前訓練されたモデルを使用して、機能抽出のためにCNNを統合する。
CK+, JAFFE, FERGなどのベンチマークデータセット上でGCFを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Facial Expression Recognition (FER) is vital for understanding interpersonal communication. However, existing classification methods often face challenges such as vulnerability to noise, imbalanced datasets, overfitting, and generalization issues. In this paper, we propose GCF, a novel approach that utilizes Graph Convolutional Networks for FER. GCF integrates Convolutional Neural Networks (CNNs) for feature extraction, using either custom architectures or pretrained models. The extracted visual features are then represented on a graph, enhancing local CNN features with global features via a Graph Convolutional Neural Network layer. We evaluate GCF on benchmark datasets including CK+, JAFFE, and FERG. The results show that GCF significantly improves performance over state-of-the-art methods. For example, GCF enhances the accuracy of ResNet18 from 92% to 98% on CK+, from 66% to 89% on JAFFE, and from 94% to 100% on FERG. Similarly, GCF improves the accuracy of VGG16 from 89% to 97% on CK+, from 72% to 92% on JAFFE, and from 96% to 99.49% on FERG. We provide a comprehensive analysis of our approach, demonstrating its effectiveness in capturing nuanced facial expressions. By integrating graph convolutions with CNNs, GCF significantly advances FER, offering improved accuracy and robustness in real-world applications.
- Abstract(参考訳): 表情認識(FER)は対人コミュニケーションを理解する上で不可欠である。
しかし、既存の分類手法は、ノイズに対する脆弱性、不均衡なデータセット、過度な適合、一般化問題といった問題に直面していることが多い。
本稿では FER にグラフ畳み込みネットワークを利用する新しいアプローチである GCF を提案する。
GCFは、カスタムアーキテクチャまたは事前訓練されたモデルを使用して、特徴抽出のために畳み込みニューラルネットワーク(CNN)を統合している。
抽出された視覚的特徴はグラフ上に表現され、グラフ畳み込みニューラルネットワーク層を介してグローバルな特徴を持つローカルCNN機能を拡張する。
CK+, JAFFE, FERGなどのベンチマークデータセット上でGCFを評価する。
その結果,GCFは最先端手法よりも性能が著しく向上することがわかった。
例えば、GCFはResNet18の精度を92%から98%に、CK+は66%から89%に、FERGは94%から100%に向上させる。
同様に、GCFはVGG16の精度を、CK+では89%から97%、JAFFEでは72%から92%、FERGでは96%から99.49%に改善している。
提案手法を包括的に分析し,ニュアンス表情の捉え方の有効性を実証する。
グラフ畳み込みとCNNを統合することで、GCFはFERを大幅に向上し、現実世界のアプリケーションにおける精度と堅牢性を改善した。
関連論文リスト
- Is Graph Convolution Always Beneficial For Every Feature? [14.15740180531667]
The Topological Feature Informativeness (TFI) is a novel metric to distinguish between GNN-favored and GNN-favored features。
本稿では,GNNとGNNが好む特徴を別々に処理する簡易かつ効果的なグラフ特徴選択法を提案する。
論文 参考訳(メタデータ) (2024-11-12T09:28:55Z) - FourierKAN-GCF: Fourier Kolmogorov-Arnold Network -- An Effective and Efficient Feature Transformation for Graph Collaborative Filtering [16.894095429454598]
本稿では,FourierKAN-GCFと呼ばれる簡易かつ効果的なグラフベースレコメンデーションモデルを提案する。
我々は、モデルの表現力と堅牢性を改善するために、メッセージドロップアウトとノードドロップアウト戦略を採用しています。
論文 参考訳(メタデータ) (2024-06-03T06:36:04Z) - How Does Message Passing Improve Collaborative Filtering? [49.019075781827034]
協調フィルタリング(CF)はレコメンダシステムに顕著な結果をもたらし、現実世界のアプリケーションに広く利用されている。
メッセージパッシングは、グラフベースの学習タスク全般の利点に似た方法でCFメソッドを支援する。
テスト時アグリゲーション(Test-time Aggregation for CF)は、推論時に一度だけメッセージパッシングを行うテスト時アグリゲーションフレームワークである。
論文 参考訳(メタデータ) (2024-03-27T18:53:04Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Adaptive Graph-Based Feature Normalization for Facial Expression
Recognition [1.2246649738388389]
データ不確実性から表情認識モデルを保護するために,適応グラフに基づく特徴正規化(AGFN)手法を提案する。
我々の手法は、ベンチマークデータセットで91.84%、91.11%の精度で最先端の作業より優れています。
論文 参考訳(メタデータ) (2022-07-22T14:57:56Z) - TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent
Kernels [141.29156234353133]
最先端の凸学習手法は、クライアントが異なるデータ分布を持つ場合、集中型よりもはるかにパフォーマンスが劣る。
我々は、この格差は、非NISTityが提示した課題に大きく起因していることを示す。
本稿では,Train-Convexify Neural Network (TCT) 手法を提案する。
論文 参考訳(メタデータ) (2022-07-13T16:58:22Z) - SCGC : Self-Supervised Contrastive Graph Clustering [1.1470070927586016]
グラフクラスタリングはネットワーク内のグループやコミュニティを検出する。
オートエンコーダのような深層学習手法は、豊富な構造情報を組み込むことはできない。
自己監督型コントラストグラフクラスタリング(SCGC)を提案する。
論文 参考訳(メタデータ) (2022-04-27T01:38:46Z) - How Powerful is Graph Convolution for Recommendation? [21.850817998277158]
グラフ畳み込みネットワーク(GCN)は、最近、協調フィルタリング(CF)のための一般的なアルゴリズムのクラスを実現した。
本稿では,グラフ信号処理のレンズを用いてGCNに基づくCF法をよりよく理解する試みを行う。
論文 参考訳(メタデータ) (2021-08-17T11:38:18Z) - VOLO: Vision Outlooker for Visual Recognition [148.12522298731807]
視覚変換器 (ViT) はイメージネット分類において自己注意に基づくモデルの可能性を示している。
我々は、新しい展望の展望を導入し、VoLO(Vision Outlooker)と呼ばれる、シンプルで一般的なアーキテクチャを提示する。
グローバルな依存性モデリングを粗いレベルで重視する自己注意とは異なり、展望はより詳細な機能やコンテキストをトークンに効率的にエンコードする。
実験の結果、私たちのVOLOはImageNet-1K分類で87.1%のトップ1の精度を達成しており、これはこの競合ベンチマークで87%以上の精度で最初のモデルである。
論文 参考訳(メタデータ) (2021-06-24T15:46:54Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。