論文の概要: Is Graph Convolution Always Beneficial For Every Feature?
- arxiv url: http://arxiv.org/abs/2411.07663v1
- Date: Tue, 12 Nov 2024 09:28:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:20:10.677876
- Title: Is Graph Convolution Always Beneficial For Every Feature?
- Title(参考訳): グラフの畳み込みは常にすべての機能に有効か?
- Authors: Yilun Zheng, Xiang Li, Sitao Luan, Xiaojiang Peng, Lihui Chen,
- Abstract要約: The Topological Feature Informativeness (TFI) is a novel metric to distinguish between GNN-favored and GNN-favored features。
本稿では,GNNとGNNが好む特徴を別々に処理する簡易かつ効果的なグラフ特徴選択法を提案する。
- 参考スコア(独自算出の注目度): 14.15740180531667
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated strong capabilities in processing structured data. While traditional GNNs typically treat each feature dimension equally during graph convolution, we raise an important question: Is the graph convolution operation equally beneficial for each feature? If not, the convolution operation on certain feature dimensions can possibly lead to harmful effects, even worse than the convolution-free models. In prior studies, to assess the impacts of graph convolution on features, people proposed metrics based on feature homophily to measure feature consistency with the graph topology. However, these metrics have shown unsatisfactory alignment with GNN performance and have not been effectively employed to guide feature selection in GNNs. To address these limitations, we introduce a novel metric, Topological Feature Informativeness (TFI), to distinguish between GNN-favored and GNN-disfavored features, where its effectiveness is validated through both theoretical analysis and empirical observations. Based on TFI, we propose a simple yet effective Graph Feature Selection (GFS) method, which processes GNN-favored and GNN-disfavored features separately, using GNNs and non-GNN models. Compared to original GNNs, GFS significantly improves the extraction of useful topological information from each feature with comparable computational costs. Extensive experiments show that after applying GFS to 8 baseline and state-of-the-art (SOTA) GNN architectures across 10 datasets, 83.75% of the GFS-augmented cases show significant performance boosts. Furthermore, our proposed TFI metric outperforms other feature selection methods. These results validate the effectiveness of both GFS and TFI. Additionally, we demonstrate that GFS's improvements are robust to hyperparameter tuning, highlighting its potential as a universal method for enhancing various GNN architectures.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は構造化データの処理において強力な能力を示している。
従来のGNNはグラフの畳み込みの間、各特徴次元を等しく扱うのが一般的だが、重要な疑問を提起する: グラフの畳み込み操作は各特徴に対して等しく有用か?
もしそうでなければ、特定の特徴次元における畳み込み操作は、畳み込みのないモデルよりも有害な効果をもたらす可能性がある。
従来の研究では, グラフの畳み込みが特徴に与える影響を評価するために, 特徴のホモフィリに基づく指標を提案し, グラフトポロジと特徴の整合性を測定した。
しかし、これらの指標はGNNのパフォーマンスに不満足な一致を示しており、GNNの機能選択を導くために効果的に使われていない。
これらの制約に対処するため,GNN と GNN が好む特徴を区別する新しい尺度であるトポロジカル・フィーチャー・インフォーマティブネス (TFI) を導入し,その妥当性を理論的解析と経験的観察の両方を通して検証した。
TFIに基づいて、GNNと非GNNモデルを用いて、GNNが好む特徴とGNNが好まない特徴を別々に処理する単純なグラフ特徴選択(GFS)手法を提案する。
元のGNNと比較して、GFSは計算コストに匹敵するコストで、各機能から有用なトポロジ情報の抽出を大幅に改善する。
大規模な実験により、GFSを8つのベースラインに適用し、10つのデータセットにわたる最先端(SOTA)のGNNアーキテクチャを適用した後、GFS拡張されたケースの83.75%は、大幅なパフォーマンス向上を示した。
さらに,提案手法は,他の特徴選択法よりも優れている。
これらの結果から, GFSとTFIの有効性が検証された。
さらに、GFSの改良はハイパーパラメータチューニングに対して堅牢であることを示し、様々なGNNアーキテクチャを拡張するための普遍的な手法としての可能性を強調した。
関連論文リスト
- GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Global Minima, Recoverability Thresholds, and Higher-Order Structure in
GNNS [0.0]
ランダムグラフ理論の観点から,グラフニューラルネットワーク(GNN)アーキテクチャの性能を解析する。
合成データにおける特定の高次構造と実データにおける経験的構造の混合が、GNNの性能に劇的な影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2023-10-11T17:16:33Z) - Improving Expressivity of GNNs with Subgraph-specific Factor Embedded
Normalization [30.86182962089487]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを扱うための学習アーキテクチャの強力なカテゴリとして登場した。
我々は SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm) と呼ばれる専用プラグアンドプレイ正規化方式を提案する。
論文 参考訳(メタデータ) (2023-05-31T14:37:31Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。