Fast, Scalable, Energy-Efficient Non-element-wise Matrix Multiplication on FPGA
- URL: http://arxiv.org/abs/2407.02362v2
- Date: Sun, 7 Jul 2024 17:20:51 GMT
- Title: Fast, Scalable, Energy-Efficient Non-element-wise Matrix Multiplication on FPGA
- Authors: Xuqi Zhu, Huaizhi Zhang, JunKyu Lee, Jiacheng Zhu, Chandrajit Pal, Sangeet Saha, Klaus D. McDonald-Maier, Xiaojun Zhai,
- Abstract summary: Modern Neural Network (NN) architectures heavily rely on vast numbers of multiply-accumulate arithmetic operations.
This paper proposes a high- throughput, scalable and energy efficient non-element-wise matrix multiplication unit on FPGAs.
Using our AMU achieves up to 9x higher throughput and 112x higher energy efficiency over the state-of-the-art solutions for the FPGA-based Quantised Neural Network (QNN) accelerators.
- Score: 10.630802853096462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern Neural Network (NN) architectures heavily rely on vast numbers of multiply-accumulate arithmetic operations, constituting the predominant computational cost. Therefore, this paper proposes a high-throughput, scalable and energy efficient non-element-wise matrix multiplication unit on FPGAs as a basic component of the NNs. We firstly streamline inter-layer and intra-layer redundancies of MADDNESS algorithm, a LUT-based approximate matrix multiplication, to design a fast, efficient scalable approximate matrix multiplication module termed "Approximate Multiplication Unit (AMU)". The AMU optimizes LUT-based matrix multiplications further through dedicated memory management and access design, decoupling computational overhead from input resolution and boosting FPGA-based NN accelerator efficiency significantly. The experimental results show that using our AMU achieves up to 9x higher throughput and 112x higher energy efficiency over the state-of-the-art solutions for the FPGA-based Quantised Neural Network (QNN) accelerators.
Related papers
- EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - KyberMat: Efficient Accelerator for Matrix-Vector Polynomial Multiplication in CRYSTALS-Kyber Scheme via NTT and Polyphase Decomposition [20.592217626952507]
CRYSTAL-Kyber (Kyber) is one of the post-quantum cryptography (PQC) key-encapsulation mechanism (KEM) schemes selected during the standardization process.
This paper addresses optimization for Kyber architecture with respect to latency and throughput constraints.
arXiv Detail & Related papers (2023-10-06T22:57:25Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - FireFly: A High-Throughput Hardware Accelerator for Spiking Neural
Networks with Efficient DSP and Memory Optimization [6.966706170499345]
Spiking neural networks (SNNs) have been widely used due to their strong biological interpretability and high energy efficiency.
Most SNN hardware implementations for field-programmable gate arrays (FPGAs) cannot meet arithmetic or memory efficiency requirements.
We propose an FPGA accelerator that can process spikes generated by the firing neuron on-the-fly (FireFly)
arXiv Detail & Related papers (2023-01-05T04:28:07Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
We propose a new smart network interface card (NIC) for distributed AI training systems using field-programmable gate arrays (FPGAs)
Our proposed FPGA-based AI smart NIC enhances overall training performance by 1.6x at 6 nodes, with an estimated 2.5x performance improvement at 32 nodes, compared to the baseline system using conventional NICs.
arXiv Detail & Related papers (2022-04-22T21:57:00Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - A Deep Learning Inference Scheme Based on Pipelined Matrix
Multiplication Acceleration Design and Non-uniform Quantization [9.454905560571085]
We introduce a low-power Multi-layer Perceptron (MLP) accelerator based on a pipelined matrix multiplication scheme and a nonuniform quantization methodology.
Results show that our method can achieve better performance with fewer power consumption.
arXiv Detail & Related papers (2021-10-10T17:31:27Z) - FTRANS: Energy-Efficient Acceleration of Transformers using FPGA [11.032972017827248]
We propose an efficient acceleration framework, Ftrans, for transformer-based large scale language representations.
Our framework significantly reduces the model size of NLP models by up to 16 times.
Our FPGA design achieves 27.07x and 81x improvement in performance and energy efficiency compared to CPU, and up to 8.80x improvement in energy efficiency compared to GPU.
arXiv Detail & Related papers (2020-07-16T18:58:31Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for
Deep Learning [1.2019888796331233]
Matrix-vector multiplications (MVM) and vector-vector outer product (VVOP) are the two most expensive operations associated with the training of deep neural networks (DNNs)
We introduce efficient techniques to SC for weight update in DNNs with the activation functions required by many state-of-the-art networks.
Our architecture reduces the computational cost by re-using random numbers and replacing certain FP multiplication operations by bit shift scaling.
Hardware design of ESSOP at 14nm technology node shows that, compared to a highly pipelined FP16 multiplier, ESSOP is 82.2% and 93.7% better in energy
arXiv Detail & Related papers (2020-03-25T07:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.