Similarity Distance-Based Label Assignment for Tiny Object Detection
- URL: http://arxiv.org/abs/2407.02394v3
- Date: Fri, 26 Jul 2024 09:15:06 GMT
- Title: Similarity Distance-Based Label Assignment for Tiny Object Detection
- Authors: Shuohao Shi, Qiang Fang, Tong Zhao, Xin Xu,
- Abstract summary: We introduce a simple but effective strategy named the Similarity Distance (SimD) to evaluate the similarity between bounding boxes.
Our approach can be applied in common anchor-based detectors in place of the IoU for label assignment and Non Maximum Suppression (NMS)
Experiments on four mainstream tiny object detection datasets demonstrate superior performance of our method.
- Score: 17.059514012235354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tiny object detection is becoming one of the most challenging tasks in computer vision because of the limited object size and lack of information. The label assignment strategy is a key factor affecting the accuracy of object detection. Although there are some effective label assignment strategies for tiny objects, most of them focus on reducing the sensitivity to the bounding boxes to increase the number of positive samples and have some fixed hyperparameters need to set. However, more positive samples may not necessarily lead to better detection results, in fact, excessive positive samples may lead to more false positives. In this paper, we introduce a simple but effective strategy named the Similarity Distance (SimD) to evaluate the similarity between bounding boxes. This proposed strategy not only considers both location and shape similarity but also learns hyperparameters adaptively, ensuring that it can adapt to different datasets and various object sizes in a dataset. Our approach can be simply applied in common anchor-based detectors in place of the IoU for label assignment and Non Maximum Suppression (NMS). Extensive experiments on four mainstream tiny object detection datasets demonstrate superior performance of our method, especially, 1.8 AP points and 4.1 AP points of very tiny higher than the state-of-the-art competitors on AI-TOD. Code is available at: \url{https://github.com/cszzshi/SimD}.
Related papers
- ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
Small objects are usually sparsely distributed and locally clustered.
Massive feature extraction computations are wasted on the non-target background area of images.
We propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing.
arXiv Detail & Related papers (2024-07-23T12:21:23Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - A Large-scale Multiple-objective Method for Black-box Attack against
Object Detection [70.00150794625053]
We propose to minimize the true positive rate and maximize the false positive rate, which can encourage more false positive objects to block the generation of new true positive bounding boxes.
We extend the standard Genetic Algorithm with Random Subset selection and Divide-and-Conquer, called GARSDC, which significantly improves the efficiency.
Compared with the state-of-art attack methods, GARSDC decreases by an average 12.0 in the mAP and queries by about 1000 times in extensive experiments.
arXiv Detail & Related papers (2022-09-16T08:36:42Z) - RFLA: Gaussian Receptive Field based Label Assignment for Tiny Object
Detection [45.10513110142015]
Current anchor-based or anchor-free label assignment paradigms incur many outlier tiny-sized ground truth samples.
We propose a Gaussian Receptive Field based Label Assignment (RFLA) strategy for tiny object detection.
Our approach outperforms the state-of-the-art competitors with 4.0 AP points on the AI-TOD dataset.
arXiv Detail & Related papers (2022-08-18T09:35:56Z) - Detecting tiny objects in aerial images: A normalized Wasserstein
distance and a new benchmark [45.10513110142015]
We propose a new evaluation metric dubbed Normalized Wasserstein Distance (NWD) and a new RanKing-based Assigning (RKA) strategy for tiny object detection.
The proposed NWD-RKA strategy can be easily embedded into all kinds of anchor-based detectors to replace the standard IoU threshold-based one.
Tested on four datasets, NWD-RKA can consistently improve tiny object detection performance by a large margin.
arXiv Detail & Related papers (2022-06-28T13:33:06Z) - Dynamic Label Assignment for Object Detection by Combining Predicted and
Anchor IoUs [20.41563386339572]
We introduce a simple and effective approach to perform label assignment dynamically based on the training status with predictions.
Our approach shows improvements in the performance of the detection models with the adaptive label assignment algorithm.
arXiv Detail & Related papers (2022-01-23T23:14:07Z) - Decoupled Adaptation for Cross-Domain Object Detection [69.5852335091519]
Cross-domain object detection is more challenging than object classification.
D-adapt achieves a state-of-the-art results on four cross-domain object detection tasks.
arXiv Detail & Related papers (2021-10-06T08:43:59Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
Current algorithms suffer from insufficient training samples and category imbalance within datasets.
We propose an efficient and effective data augmentation method called DecAug for HOI detection.
Experiments show that our method brings up to 3.3 mAP and 1.6 mAP improvements on V-COCO and HICODET dataset.
arXiv Detail & Related papers (2020-10-02T13:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.