RaCIL: Ray Tracing based Multi-UAV Obstacle Avoidance through Composite Imitation Learning
- URL: http://arxiv.org/abs/2407.02520v1
- Date: Mon, 24 Jun 2024 17:43:24 GMT
- Title: RaCIL: Ray Tracing based Multi-UAV Obstacle Avoidance through Composite Imitation Learning
- Authors: Harsh Bansal, Vyom Goyal, Bhaskar Joshi, Akhil Gupta, Harikumar Kandath,
- Abstract summary: We address the challenge of obstacle avoidance for Unmanned Aerial Vehicles (UAVs) through an innovative imitation learning approach.
Our research underscores the significant role of ray-tracing in enhancing obstacle detection and avoidance capabilities.
Our approach paves the way for advanced autonomous UAV operations in crowded or dynamic environments.
- Score: 1.934627691560021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we address the challenge of obstacle avoidance for Unmanned Aerial Vehicles (UAVs) through an innovative composite imitation learning approach that combines Proximal Policy Optimization (PPO) with Behavior Cloning (BC) and Generative Adversarial Imitation Learning (GAIL), enriched by the integration of ray-tracing techniques. Our research underscores the significant role of ray-tracing in enhancing obstacle detection and avoidance capabilities. Moreover, we demonstrate the effectiveness of incorporating GAIL in coordinating the flight paths of two UAVs, showcasing improved collision avoidance capabilities. Extending our methodology, we apply our combined PPO, BC, GAIL, and ray-tracing framework to scenarios involving four UAVs, illustrating its scalability and adaptability to more complex scenarios. The findings indicate that our approach not only improves the reliability of basic PPO based obstacle avoidance but also paves the way for advanced autonomous UAV operations in crowded or dynamic environments.
Related papers
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
We present an exploration-based trajectory optimization approach, referred to as ETO.
This learning method is designed to enhance the performance of open LLM agents.
Our experiments on three complex tasks demonstrate that ETO consistently surpasses baseline performance by a large margin.
arXiv Detail & Related papers (2024-03-04T21:50:29Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
Reinforcement learning algorithms have emerged as a promising approach to address these challenges.
Here, we address the problem of efficiently and safely navigating T-intersections using a lower-cost, single-agent approach.
Our results reveal that the proposed approach enables the AV to effectively navigate T-intersections, outperforming previous methods in terms of travel delays, collision minimization, and overall cost.
arXiv Detail & Related papers (2023-09-30T10:54:02Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
This paper investigates an interference-aware joint path planning and power allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment.
The UAV aims to maximize its uplink throughput and minimize the level of interference to the ground user equipment (UEs) connected to the neighbor cellular BSs.
An apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning and deep reinforcement learning (DRL)
arXiv Detail & Related papers (2023-06-15T20:50:05Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle
Avoidance [1.2693545159861856]
We present two techniques for improving exploration for UAV obstacle avoidance.
The first is a convergence-based approach that uses convergence error to iterate through unexplored actions and temporal threshold to balance exploration and exploitation.
The second is a guidance-based approach which uses a Gaussian mixture distribution to compare previously seen states to a predicted next state in order to select the next action.
arXiv Detail & Related papers (2021-03-11T01:15:26Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
Adversarial training is one of the most effective defenses against adversarial attacks for deep learning models.
In this work, we advocate incorporating the hypersphere embedding mechanism into the AT procedure.
We validate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-20T08:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.