論文の概要: Domain Generalizable Knowledge Tracing via Concept Aggregation and Relation-Based Attention
- arxiv url: http://arxiv.org/abs/2407.02547v1
- Date: Tue, 2 Jul 2024 13:13:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:43:42.934063
- Title: Domain Generalizable Knowledge Tracing via Concept Aggregation and Relation-Based Attention
- Title(参考訳): 概念集約と関係に基づく注意によるドメイン一般化可能な知識追跡
- Authors: Yuquan Xie, Wanqi Yang, Jinyu Wei, Ming Yang, Yang Gao,
- Abstract要約: 本稿では,知識追跡のための領域一般化手法を提案する。
また,多様な領域からの学生同士の相互作用のシーケンスにおける概念格差を低減するために,概念集約アプローチを提案する。
運動情報を完全に活用するために,ドメイン一般化KTタスクに適した知識追跡モデルDGRKTを提案する。
- 参考スコア(独自算出の注目度): 10.95112067894146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Tracing (KT) is a critical task in online education systems, aiming to monitor students' knowledge states throughout a learning period. Common KT approaches involve predicting the probability of a student correctly answering the next question based on their exercise history. However, these methods often suffer from performance degradation when faced with the scarcity of student interactions in new education systems. To address this, we leverage student interactions from existing education systems to mitigate performance degradation caused by limited training data. Nevertheless, these interactions exhibit significant differences since they are derived from different education systems. To address this issue, we propose a domain generalization approach for knowledge tracing, where existing education systems are considered source domains, and new education systems with limited data are considered target domains. Additionally, we design a domain-generalizable knowledge tracing framework (DGKT) that can be applied to any KT model. Specifically, we present a concept aggregation approach designed to reduce conceptual disparities within sequences of student interactions from diverse domains. To further mitigate domain discrepancies, we introduce a novel normalization module called Sequence Instance Normalization (SeqIN). Moreover, to fully leverage exercise information, we propose a new knowledge tracing model tailored for the domain generalization KT task, named Domain-Generalizable Relation-based Knowledge Tracing (DGRKT). Extensive experiments across five benchmark datasets demonstrate that the proposed method performs well despite limited training data.
- Abstract(参考訳): KT(Knowledge Tracing)は、学習期間を通じて学生の知識状態を監視することを目的として、オンライン教育システムにおいて重要な課題である。
一般的なKTアプローチは、学生が運動履歴に基づいて次の質問に正しく答える確率を予測することである。
しかし、これらの手法は、新しい教育システムにおける学生の交流の欠如に直面した場合、性能劣化に悩まされることが多い。
これを解決するために,既存の教育システムからの学生のインタラクションを活用して,限られた学習データによる性能劣化を軽減する。
しかしながら、これらの相互作用は、異なる教育システムから派生したものであるため、大きな違いを示す。
この問題に対処するために,既存の教育システムをソースドメインとみなし,限られたデータを持つ新しい教育システムをターゲットドメインとみなす,知識追跡のためのドメイン一般化手法を提案する。
さらに,任意のKTモデルに適用可能なドメイン一般化型知識追跡フレームワーク(DGKT)を設計する。
具体的には、多様なドメインから学生同士の相互作用のシーケンスにおける概念格差を低減するために、概念集約アプローチを提案する。
ドメインの相違をさらに緩和するために、SeqIN(Sequence Instance Normalization)と呼ばれる新しい正規化モジュールを導入する。
さらに,エクササイズ情報を完全に活用するために,ドメイン一般化KTタスクに適した新しい知識追跡モデル,ドメイン一般化型関係ベース知識トレース(DGRKT)を提案する。
5つのベンチマークデータセットにわたる大規模な実験により、限られたトレーニングデータにもかかわらず、提案手法が良好に動作することを示した。
関連論文リスト
- Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Domain Generalization through Meta-Learning: A Survey [6.524870790082051]
ディープニューラルネットワーク(DNN)は人工知能に革命をもたらしたが、アウト・オブ・ディストリビューション(OOD)データに直面すると、しばしばパフォーマンスが低下する。
本調査はメタラーニングの領域を掘り下げ,ドメインの一般化への貢献に焦点をあてたものである。
論文 参考訳(メタデータ) (2024-04-03T14:55:17Z) - Direct Distillation between Different Domains [97.39470334253163]
異なるドメイン間の直接蒸留(4Ds)と呼ばれる新しいワンステージ手法を提案する。
まず、Fourier変換に基づいて学習可能なアダプタを設計し、ドメイン固有の知識からドメイン不変知識を分離する。
次に、価値あるドメイン不変知識を学生ネットワークに転送するための融合活性化機構を構築する。
論文 参考訳(メタデータ) (2024-01-12T02:48:51Z) - Improving Intrusion Detection with Domain-Invariant Representation Learning in Latent Space [4.871119861180455]
マルチタスク学習を用いた2相表現学習手法を提案する。
我々は、先行空間と潜時空間の間の相互情報の最小化により、潜時空間を解き放つ。
モデルの有効性を複数のサイバーセキュリティデータセットで評価する。
論文 参考訳(メタデータ) (2023-12-28T17:24:13Z) - A Recent Survey of Heterogeneous Transfer Learning [15.830786437956144]
異種移動学習は 様々なタスクにおいて 重要な戦略となっている。
データベースとモデルベースの両方のアプローチを網羅した60以上のHTLメソッドの広範なレビューを提供する。
自然言語処理,コンピュータビジョン,マルチモーダル学習,バイオメディシンの応用について検討する。
論文 参考訳(メタデータ) (2023-10-12T16:19:58Z) - Prior Knowledge Guided Unsupervised Domain Adaptation [82.9977759320565]
本稿では,対象とするクラス分布に関する事前知識を利用できる知識誘導型非教師付きドメイン適応(KUDA)設定を提案する。
特に,対象領域におけるクラス分布に関する2種類の事前知識について考察する。
このような事前知識を用いて生成した擬似ラベルを精査する修正モジュールを提案する。
論文 参考訳(メタデータ) (2022-07-18T18:41:36Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
教師なしのドメイン適応は、トレーニング中、ターゲットドメイン内のラベルなしデータにアクセス可能な、多くの機械学習アプリケーションで使用されている。
領域適応のための新しい一般化法を導出し、f-発散体の変分的特徴に基づく分布間の相違性の新しい尺度を利用する。
論文 参考訳(メタデータ) (2021-06-21T18:21:09Z) - Dual-Teacher++: Exploiting Intra-domain and Inter-domain Knowledge with
Reliable Transfer for Cardiac Segmentation [69.09432302497116]
最先端の半教師付きドメイン適応フレームワークである Dual-Teacher++ を提案する。
ソースドメイン(MRなど)からのクロスモダリティ優先度を探索するドメイン間教師モデルと、ラベルのないターゲットドメインの知識を調査するドメイン内教師モデルを含む、新しいデュアル教師モデルを設計する。
このようにして、学生モデルは信頼できる二重ドメイン知識を得て、ターゲットドメインデータのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2021-01-07T05:17:38Z) - A survey on domain adaptation theory: learning bounds and theoretical
guarantees [17.71634393160982]
この調査の主な目的は、特定の、そして間違いなく最も人気のある、移動学習のサブフィールドにおける最先端の理論的結果の概要を提供することである。
このサブフィールドでは、学習タスクは同じままで、トレーニングとテストデータの間でデータ分布が変化すると仮定される。
本稿では、ドメイン適応問題に関連する既存の結果の最新の記述について述べる。
論文 参考訳(メタデータ) (2020-04-24T16:11:03Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
本稿では,DAKT問題に対処するための新しい適応型フレームワーク,すなわち知識追跡(AKT)を提案する。
まず,Deep Knowledge Trace(DKT)に基づく教育的特徴(スリップ,推測,質問文など)を取り入れ,優れた知識追跡モデルを得る。
第2の側面として、3つのドメイン適応プロセスを提案し、採用する。まず、ターゲットモデルトレーニングに有用なソースインスタンスを選択するために、自動エンコーダを事前訓練する。
論文 参考訳(メタデータ) (2020-01-14T15:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。