Large Scale Hierarchical Industrial Demand Time-Series Forecasting incorporating Sparsity
- URL: http://arxiv.org/abs/2407.02657v1
- Date: Tue, 2 Jul 2024 20:40:08 GMT
- Title: Large Scale Hierarchical Industrial Demand Time-Series Forecasting incorporating Sparsity
- Authors: Harshavardhan Kamarthi, Aditya B. Sasanur, Xinjie Tong, Xingyu Zhou, James Peters, Joe Czyzyk, B. Aditya Prakash,
- Abstract summary: We propose HAILS, a novel probabilistic hierarchical model that enables accurate and calibrated probabilistic forecasts across the hierarchy.
We deploy HAILS at a large chemical manufacturing company for a product demand forecasting application with over ten thousand products and observe a significant 8.5% improvement in forecast accuracy and 23% better improvement for sparse time-series.
- Score: 16.609280485541323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hierarchical time-series forecasting (HTSF) is an important problem for many real-world business applications where the goal is to simultaneously forecast multiple time-series that are related to each other via a hierarchical relation. Recent works, however, do not address two important challenges that are typically observed in many demand forecasting applications at large companies. First, many time-series at lower levels of the hierarchy have high sparsity i.e., they have a significant number of zeros. Most HTSF methods do not address this varying sparsity across the hierarchy. Further, they do not scale well to the large size of the real-world hierarchy typically unseen in benchmarks used in literature. We resolve both these challenges by proposing HAILS, a novel probabilistic hierarchical model that enables accurate and calibrated probabilistic forecasts across the hierarchy by adaptively modeling sparse and dense time-series with different distributional assumptions and reconciling them to adhere to hierarchical constraints. We show the scalability and effectiveness of our methods by evaluating them against real-world demand forecasting datasets. We deploy HAILS at a large chemical manufacturing company for a product demand forecasting application with over ten thousand products and observe a significant 8.5\% improvement in forecast accuracy and 23% better improvement for sparse time-series. The enhanced accuracy and scalability make HAILS a valuable tool for improved business planning and customer experience.
Related papers
- A Comprehensive Forecasting Framework based on Multi-Stage Hierarchical Forecasting Reconciliation and Adjustment [16.859089765648356]
We propose a novel framework to address the challenges of preserving seasonality, ensuring coherence, and improving accuracy.
The proposed framework has been deployed and leveraged by Walmart's ads, sales and operations teams to track future demands.
arXiv Detail & Related papers (2024-12-19T10:33:19Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - A Scalable and Transferable Time Series Prediction Framework for Demand
Forecasting [24.06534393565697]
Time series forecasting is one of the most essential and ubiquitous tasks in many business problems.
We propose Forecasting orchestra (Forchestra), a simple but powerful framework capable of accurately predicting future demand for a diverse range of items.
arXiv Detail & Related papers (2024-02-29T18:01:07Z) - Hierarchical Forecasting at Scale [55.658563862299495]
Existing hierarchical forecasting techniques scale poorly when the number of time series increases.
We propose to learn a coherent forecast for millions of time series with a single bottom-level forecast model.
We implement our sparse hierarchical loss function within an existing forecasting model at bol, a large European e-commerce platform.
arXiv Detail & Related papers (2023-10-19T15:06:31Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Efficient Forecasting of Large Scale Hierarchical Time Series via
Multilevel Clustering [26.236569277576425]
We propose a novel approach to the problem of clustering hierarchically aggregated time-series data.
We first group time series at each aggregated level, while simultaneously leveraging local and global information.
arXiv Detail & Related papers (2022-05-27T17:13:05Z) - Reframing demand forecasting: a two-fold approach for lumpy and
intermittent demand [0.9137554315375922]
We show that competitive demand forecasts can be obtained through two models: predicting the demand occurrence and estimating the demand size.
Our research shows that global classification models are the best choice when predicting demand event occurrence.
We tested our approach on real-world data consisting of 516 three-year-long time series corresponding to European automotive original equipment manufacturers' daily demand.
arXiv Detail & Related papers (2021-03-23T17:57:40Z) - Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series [11.004159006784977]
We propose a flexible nonlinear model that optimize quantile regression loss coupled with suitable regularization terms to maintain consistency of forecasts across hierarchies.
The theoretical framework introduced herein can be applied to any forecasting model with an underlying differentiable loss function.
arXiv Detail & Related papers (2021-02-25T00:59:01Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.