論文の概要: AI in Action: Accelerating Progress Towards the Sustainable Development Goals
- arxiv url: http://arxiv.org/abs/2407.02711v1
- Date: Tue, 2 Jul 2024 23:25:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 17:54:48.167783
- Title: AI in Action: Accelerating Progress Towards the Sustainable Development Goals
- Title(参考訳): AI in Action: 持続可能な開発目標に向けての進歩を加速する
- Authors: Brigitte Hoyer Gosselink, Kate Brandt, Marian Croak, Karen DeSalvo, Ben Gomes, Lila Ibrahim, Maggie Johnson, Yossi Matias, Ruth Porat, Kent Walker, James Manyika,
- Abstract要約: 私たちは、国連の持続可能な開発目標に対する行動を促進するAIの可能性を示すために、Googleの内部および共同研究、技術的作業、および社会的影響イニシアチブを描いています。
この論文では、コンピュータビジョン、生成AI、自然言語処理、マルチモーダルAIを含むAIの能力を強調し、AIが17のSDGすべてにまたがる問題解決へのアプローチをどのように変えているかを示している。
そして私たちは、大胆で責任あるイノベーションを推進し、インパクトを高め、アクセシビリティのギャップを埋め、すべての人がAIから恩恵を受けられるように、AI開発とデプロイメントに関する洞察を提供します。
- 参考スコア(独自算出の注目度): 4.09375125119842
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Advances in Artificial Intelligence (AI) are helping tackle a growing number of societal challenges, demonstrating technology's increasing capability to address complex issues, including those outlined in the United Nations (UN) Sustainable Development Goals (SDGs). Despite global efforts, 80 percent of SDG targets have deviated, stalled, or regressed, and only 15 percent are on track as of 2023, illustrating the urgency of accelerating efforts to meet the goals by 2030. We draw on Google's internal and collaborative research, technical work, and social impact initiatives to show AI's potential to accelerate action on the SDGs and make substantive progress to help address humanity's most pressing challenges. The paper highlights AI capabilities (including computer vision, generative AI, natural language processing, and multimodal AI) and showcases how AI is altering how we approach problem-solving across all 17 SDGs through use cases, with a spotlight on AI-powered innovation in health, education, and climate. We then offer insights on AI development and deployment to drive bold and responsible innovation, enhance impact, close the accessibility gap, and ensure that everyone, everywhere, can benefit from AI.
- Abstract(参考訳): 人工知能(AI)の進歩は、国連(UN)の持続可能な開発目標(SDG)など、複雑な問題に対処する技術の増加を実証する、社会的な課題の増大に寄与している。
世界的努力にもかかわらず、SDG目標の80%は逸脱、停滞、または後退しており、2023年時点ではわずか15%しか軌道に進まない。
私たちは、AIがSDGに対する行動を加速し、人類の最も圧力のかかる課題に対処するための実質的な進歩を示すために、Googleの内部的かつ協力的な研究、技術的作業、社会的影響イニシアチブを引き合いに出している。
この論文では、AI能力(コンピュータビジョン、生成AI、自然言語処理、マルチモーダルAIなど)を強調し、AIが、ユースケースを通じて17のSDGすべてにまたがる問題解決にどのようにアプローチするかを、AIによる健康、教育、気候のイノベーションに焦点を当てている。
そして私たちは、大胆で責任あるイノベーションを推進し、インパクトを高め、アクセシビリティのギャップを埋め、すべての人がAIから恩恵を受けられるように、AI開発とデプロイメントに関する洞察を提供します。
関連論文リスト
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Ten Hard Problems in Artificial Intelligence We Must Get Right [72.99597122935903]
AIの約束を阻止し、AIのリスクを引き起こすAI2050の「ハード問題」について検討する。
それぞれの問題について、その領域を概説し、最近の重要な作業を特定し、今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-06T23:16:41Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation? [0.0]
この記事では、AI技術を簡潔に説明し、分類し、理論化する。
そして、持続可能性に関する議論の観点から、その分析を政治的に文脈化する。
持続可能な社会へ進む上で、AIは小さな役割を担っている、と氏は主張する。
論文 参考訳(メタデータ) (2023-06-15T15:40:00Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Positive AI: Key Challenges in Designing Artificial Intelligence for
Wellbeing [0.5461938536945723]
多くの人々は、AIが自分の生活に与える影響をますます心配しています。
AIの進歩を確実にするために、一部の研究者はAIを統治する鍵となる目的として「幸福」を提案した。
この記事では、幸福のためにAIを設計する際の重要な課題に対処する。
論文 参考訳(メタデータ) (2023-04-12T12:43:00Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
我々は、AIの持続可能性問題に対処できる機械学習アプローチの大きなトレンドについてレビューする。
我々は、既存の研究の大きな限界を強調し、次世代の持続可能なAI技術を開発するための潜在的研究課題と方向性を提案する。
論文 参考訳(メタデータ) (2022-05-08T09:38:35Z) - An Empirical Analysis of AI Contributions to Sustainable Cities (SDG11) [4.56877715768796]
AIの応用は、17の持続可能な開発目標に大きく影響している。
SDG 11(持続可能な都市・コミュニティ)の進展を支えるためのAIの貢献を分析する。
われわれの分析によると、AIシステムはいくつかの方法で持続可能な都市の発展に寄与している。
論文 参考訳(メタデータ) (2022-02-06T22:30:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。