論文の概要: Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences
- arxiv url: http://arxiv.org/abs/2505.16619v1
- Date: Thu, 22 May 2025 12:52:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.293064
- Title: Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences
- Title(参考訳): オープンで持続可能なAI:生命科学の課題、機会、道のり
- Authors: Gavin Farrell, Eleni Adamidi, Rafael Andrade Buono, Mihail Anton, Omar Abdelghani Attafi, Salvador Capella Gutierrez, Emidio Capriotti, Leyla Jael Castro, Davide Cirillo, Lisa Crossman, Christophe Dessimoz, Alexandros Dimopoulos, Raul Fernandez-Diaz, Styliani-Christina Fragkouli, Carole Goble, Wei Gu, John M. Hancock, Alireza Khanteymoori, Tom Lenaerts, Fabio G. Liberante, Peter Maccallum, Alexander Miguel Monzon, Magnus Palmblad, Lucy Poveda, Ovidiu Radulescu, Denis C. Shields, Shoaib Sufi, Thanasis Vergoulis, Fotis Psomopoulos, Silvio C. E. Tosatto,
- Abstract要約: 我々は、AI研究成果に対する信頼の侵食の増加についてレビューする。
我々は、AIエコシステムの断片化されたコンポーネントと、OpenとSustainable AIを最大限にサポートするためのガイドパスの欠如について論じる。
私たちの研究は、研究者と関連するAIリソースを結びつけることで、持続可能な、再利用可能な、透過的なAIの実装を容易にします。
- 参考スコア(独自算出の注目度): 50.9036832382286
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial intelligence (AI) has recently seen transformative breakthroughs in the life sciences, expanding possibilities for researchers to interpret biological information at an unprecedented capacity, with novel applications and advances being made almost daily. In order to maximise return on the growing investments in AI-based life science research and accelerate this progress, it has become urgent to address the exacerbation of long-standing research challenges arising from the rapid adoption of AI methods. We review the increased erosion of trust in AI research outputs, driven by the issues of poor reusability and reproducibility, and highlight their consequent impact on environmental sustainability. Furthermore, we discuss the fragmented components of the AI ecosystem and lack of guiding pathways to best support Open and Sustainable AI (OSAI) model development. In response, this perspective introduces a practical set of OSAI recommendations directly mapped to over 300 components of the AI ecosystem. Our work connects researchers with relevant AI resources, facilitating the implementation of sustainable, reusable and transparent AI. Built upon life science community consensus and aligned to existing efforts, the outputs of this perspective are designed to aid the future development of policy and structured pathways for guiding AI implementation.
- Abstract(参考訳): 人工知能(AI)は最近、生命科学の革新的なブレークスルーを目の当たりにし、研究者が前例のない能力で生物学的情報を解釈する可能性を広げ、新しい応用と進歩がほぼ毎日行われている。
AIベースの生命科学研究への投資の増大を最大化し、この進歩を加速するために、AI手法の急速な導入による長年の研究課題の悪化に対処することが急務になっている。
我々は、AI研究成果に対する信頼の侵食の増加を、再利用性や再現性の問題によって引き起こされ、環境サステナビリティに対する彼らの影響を強調した。
さらに、AIエコシステムの断片化されたコンポーネントと、Open and Sustainable AI(OSAI)モデル開発を最大限にサポートするためのガイドパスの欠如についても論じる。
これに対して、この視点では、AIエコシステムの300以上のコンポーネントに直接マップされた、OSAI推奨の実践的なセットを紹介している。
私たちの研究は、研究者と関連するAIリソースを結びつけることで、持続可能な、再利用可能な、透過的なAIの実装を容易にします。
ライフサイエンスコミュニティのコンセンサスに基づいて構築され、既存の取り組みに合わせて、この視点のアウトプットは、AI実装を導くためのポリシーと構造化された経路の将来の開発を支援するように設計されている。
関連論文リスト
- AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
科学科学(Science of Science, SoS)は、科学的発見の基礎となるメカニズムを探求する。
人工知能(AI)の出現は、次世代のSoSに変革の機会をもたらす。
我々は、従来の手法よりもAIの利点を概説し、潜在的な制限について議論し、それらを克服するための経路を提案する。
論文 参考訳(メタデータ) (2025-05-17T15:01:33Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
我々は、AIの倫理的影響を研究するための努力は、その環境への影響を評価するものと相まって行われるべきであると論じる。
我々は,AI研究と実践にAI倫理と持続可能性を統合するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2025-04-01T13:53:11Z) - Unlocking the Potential of AI Researchers in Scientific Discovery: What Is Missing? [20.94708392671015]
AI4Scienceの総出版物のシェアは2024年の3.57%から2050年までに約25%になると予想しています。
我々は,AI研究者を科学的発見の最前線に位置づける構造的かつ行動可能な戦略を提案する。
論文 参考訳(メタデータ) (2025-03-05T09:29:05Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
持続可能な垂直農業におけるAIの役割を包括的に探求する。
このレビューは、機械学習、コンピュータビジョン、IoT(Internet of Things)、ロボット工学を含む、AIアプリケーションの現状を合成する。
この影響は、経済的な可能性、環境への影響の低減、食料安全保障の向上など、効率の向上を超えて拡大している。
論文 参考訳(メタデータ) (2023-11-17T22:15:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
我々は、AIの持続可能性問題に対処できる機械学習アプローチの大きなトレンドについてレビューする。
我々は、既存の研究の大きな限界を強調し、次世代の持続可能なAI技術を開発するための潜在的研究課題と方向性を提案する。
論文 参考訳(メタデータ) (2022-05-08T09:38:35Z) - An Empirical Analysis of AI Contributions to Sustainable Cities (SDG11) [4.56877715768796]
AIの応用は、17の持続可能な開発目標に大きく影響している。
SDG 11(持続可能な都市・コミュニティ)の進展を支えるためのAIの貢献を分析する。
われわれの分析によると、AIシステムはいくつかの方法で持続可能な都市の発展に寄与している。
論文 参考訳(メタデータ) (2022-02-06T22:30:23Z) - Artificial intelligence for Sustainable Energy: A Contextual Topic
Modeling and Content Analysis [0.0]
LDA、BERT、Clusteringを組み合わせた新しいコンテキストトピックモデリングを提供する。
次に、これらの計算分析と関連する学術出版物のコンテンツ分析を組み合わせて、持続可能なAIに関する科学研究における主要な学術的話題、サブテーマ、および横断テーマを特定した。
我々の研究は、持続可能な建物、都市水管理のためのAIベースのDSS、気候人工知能、農業4、AIとIoTの融合、再生可能技術の評価を含む8つの主要なトピックを特定した。
論文 参考訳(メタデータ) (2021-10-02T15:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。