論文の概要: A Steerable Deep Network for Model-Free Diffusion MRI Registration
- arxiv url: http://arxiv.org/abs/2501.04794v2
- Date: Fri, 10 Jan 2025 14:59:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 12:07:36.434901
- Title: A Steerable Deep Network for Model-Free Diffusion MRI Registration
- Title(参考訳): モデルフリー拡散MRI登録のためのステアブルディープネットワーク
- Authors: Gianfranco Cortes, Xiaoda Qu, Baba C. Vemuri,
- Abstract要約: 原拡散MRIデータの非厳密な登録のための新しい深層学習フレームワークを提案する。
この研究は、データ駆動型幾何対応のdMRI登録の基盤を、取得空間で直接確立する。
- 参考スコア(独自算出の注目度): 4.813333335683418
- License:
- Abstract: Nonrigid registration is vital to medical image analysis but remains challenging for diffusion MRI (dMRI) due to its high-dimensional, orientation-dependent nature. While classical methods are accurate, they are computationally demanding, and deep neural networks, though efficient, have been underexplored for nonrigid dMRI registration compared to structural imaging. We present a novel, deep learning framework for model-free, nonrigid registration of raw diffusion MRI data that does not require explicit reorientation. Unlike previous methods relying on derived representations such as diffusion tensors or fiber orientation distribution functions, in our approach, we formulate the registration as an equivariant diffeomorphism of position-and-orientation space. Central to our method is an $\mathsf{SE}(3)$-equivariant UNet that generates velocity fields while preserving the geometric properties of a raw dMRI's domain. We introduce a new loss function based on the maximum mean discrepancy in Fourier space, implicitly matching ensemble average propagators across images. Experimental results on Human Connectome Project dMRI data demonstrate competitive performance compared to state-of-the-art approaches, with the added advantage of bypassing the overhead for estimating derived representations. This work establishes a foundation for data-driven, geometry-aware dMRI registration directly in the acquisition space.
- Abstract(参考訳): 非剛性登録は、医用画像解析には不可欠であるが、高次元、配向依存性の性質のため、拡散MRI(dMRI)では依然として困難である。
古典的手法は正確だが、計算的に要求されるものであり、深層ニューラルネットワークは効率的ではあるが、構造画像と比較して非剛性dMRI登録には過小評価されている。
本稿では, モデルのない非厳密な原拡散MRIデータ登録のための新しいディープラーニングフレームワークを提案する。
拡散テンソルやファイバー配向分布関数などの導出表現に依存する従来の方法とは異なり、我々のアプローチでは、位置と向きの空間の同変微分同型として登録を定式化する。
我々の手法の中心は、生のdMRI領域の幾何学的性質を保ちながら速度場を生成する$\mathsf{SE}(3)$-equivariant UNetである。
フーリエ空間における平均誤差の最大値に基づく新たな損失関数を導入し,画像間のアンサンブル平均プロパゲータを暗黙的にマッチングする。
Human Connectome Project dMRIによる実験結果は、最先端の手法と比較して競争性能が向上し、導出表現を推定するオーバーヘッドを回避できるという利点が加わった。
この研究は、データ駆動型幾何対応のdMRI登録の基盤を、取得空間で直接確立する。
関連論文リスト
- Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI圧縮は、複雑な時間的ダイナミクス、低信号-雑音比、複雑な基礎的冗長性のために、ユニークな課題を生んでいる。
Inlicit Neural Representation (INR)に基づくfMRIデータに適した新しい圧縮パラダイムについて報告する。
論文 参考訳(メタデータ) (2023-11-30T05:54:37Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Neural Spherical Harmonics for structurally coherent continuous
representation of diffusion MRI signal [0.3277163122167433]
本稿では,ヒト脳の構造的コヒーレンスから恩恵を受ける拡散磁気共鳴画像(dMRI)データセットをモデル化する方法を提案する。
現在の方法では、個々のボクセルのdMRI信号をモデル化し、現在存在するボクセルのコヒーレンスを無視している。
我々は、ニューラルネットワークを用いて、Human Connectome Projectデータセットから1つの対象のdMRI信号を表現するために、球面調和系列をパラメータ化する。
論文 参考訳(メタデータ) (2023-08-16T08:28:01Z) - Robust Fiber Orientation Distribution Function Estimation Using Deep Constrained Spherical Deconvolution for Diffusion MRI [9.570365838548073]
測定したDW-MRI信号をモデル化するための一般的なプラクティスは、繊維配向分布関数(fODF)である。
DW-MRIの取得において、測定変数(サイト内およびサイト内変動、ハードウェア性能、シーケンス設計など)は避けられない。
既存のモデルベース手法(例えば、制約付き球面デコンボリューション(CSD))や学習ベース手法(例えば、ディープラーニング(DL))は、fODFモデリングにおいてそのような変動を明示的に考慮していない。
本稿では,データ駆動型深部制約付き球面デコンボリューション法を提案する。
論文 参考訳(メタデータ) (2023-06-05T14:06:40Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative
R2* Mapping [12.414040285543273]
CoRRECTは、定量的MRI(qMRI)のための統合深部展開(DU)フレームワークである
モデルベースのエンドツーエンドニューラルネットワーク、モーションアーティファクトリダクションの方法、自己教師型学習スキームで構成されている。
実験で収集したmGRE(Multi-Gradient-Recalled Echo) MRIデータから,CoRRECTは高速な取得設定で動きと不均一なアーチファクトのないR2*マップを復元することを示した。
論文 参考訳(メタデータ) (2022-10-12T15:49:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。