論文の概要: Croppable Knowledge Graph Embedding
- arxiv url: http://arxiv.org/abs/2407.02779v2
- Date: Thu, 12 Jun 2025 13:28:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 17:54:42.809179
- Title: Croppable Knowledge Graph Embedding
- Title(参考訳): Croppable Knowledge Graph Embedding
- Authors: Yushan Zhu, Wen Zhang, Zhiqiang Liu, Mingyang Chen, Lei Liang, Huajun Chen,
- Abstract要約: 知識グラフ埋め込み(KGE)は、AIタスクにおける知識グラフ(KG)の一般的なアプローチである。
新しい次元を必要とすることは、新しいKGEモデルをスクラッチからトレーニングし、コストを増大させ、効率と柔軟性を制限することを意味する。
そこで本稿では,KGE 学習フレームワーク MED を提案する。これにより,異なる次元のニーズを持つ複数のシナリオに対して,収穫可能な KGE モデルを得ることができる。
- 参考スコア(独自算出の注目度): 34.154096023765916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Graph Embedding (KGE) is a common approach for Knowledge Graphs (KGs) in AI tasks. Embedding dimensions depend on application scenarios. Requiring a new dimension means training a new KGE model from scratch, increasing cost and limiting efficiency and flexibility. In this work, we propose a novel KGE training framework MED. It allows one training to obtain a croppable KGE model for multiple scenarios with different dimensional needs. Sub-models of required dimensions can be directly cropped and used without extra training. In MED, we propose a mutual learning mechanism to improve the low-dimensional sub-models and make high-dimensional sub-models retain the low-dimensional sub-models' capacity, an evolutionary improvement mechanism to promote the high-dimensional sub-models to master the triple that the low-dimensional sub-models can not, and a dynamic loss weight to adaptively balance the multiple losses. Experiments on 4 KGE models across 4 standard KG completion datasets, 3 real-world scenarios using a large-scale KG, and extending MED to the BERT language model demonstrate its effectiveness, high efficiency, and flexible extensibility.
- Abstract(参考訳): 知識グラフ埋め込み(KGE)は、AIタスクにおける知識グラフ(KG)の一般的なアプローチである。
次元の埋め込みはアプリケーションのシナリオに依存します。
新しい次元を必要とすることは、新しいKGEモデルをスクラッチからトレーニングし、コストを増大させ、効率と柔軟性を制限することを意味する。
本稿では,新しいKGEトレーニングフレームワークMEDを提案する。
1つのトレーニングで、異なる次元のニーズを持つ複数のシナリオに対して、収穫可能なKGEモデルを得ることができる。
必要な次元のサブモデルは、余分な訓練なしで直接収穫および使用することができる。
MEDでは、低次元のサブモデルを改善するための相互学習機構を提案し、高次元のサブモデルが低次元のサブモデルのキャパシティを保持するようにし、低次元のサブモデルができないトリプルをマスターするために高次元のサブモデルを促進する進化的改善機構と、複数の損失を適応的にバランスさせる動的損失重みを提案する。
4つの標準KG補完データセットにわたる4つのKGEモデルの実験、大規模なKGを使用した3つの実世界のシナリオ、およびMEDをBERT言語モデルに拡張した実験は、その有効性、高い効率、柔軟な拡張性を示している。
関連論文リスト
- Active Data Curation Effectively Distills Large-Scale Multimodal Models [66.23057263509027]
知識蒸留(KD)は、大規模モデルをより小さなものに圧縮するデファクトスタンダードである。
本研究では, 対照的なマルチモーダル事前学習のための効果的な蒸留法として, 能動的データキュレーションの代替として, 簡単なアプローチを探求する。
我々の単純なオンラインバッチ選択方法であるACIDは、さまざまなモデル、データ、計算構成において、強力なKDベースラインよりも優れています。
論文 参考訳(メタデータ) (2024-11-27T18:50:15Z) - Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation [10.48108719012248]
我々は、より大規模な教師モデルを模倣するために、コンパクトな学生モデルを訓練する知識蒸留(KD)に焦点を当てる。
これまでの作業の多くとは対照的に、トレーニング中の学生モデルのパラメータをスケールアップする。
論文 参考訳(メタデータ) (2024-11-10T12:40:59Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Enhancing Cross-Category Learning in Recommendation Systems with
Multi-Layer Embedding Training [2.4862527485819186]
多層埋め込み訓練(MLET)は、埋め込み層の因子化による埋め込みを訓練する。
MLETは、特に稀なアイテムに対して、一貫してより良いモデルを生成する。
モデル品質が一定であれば、MLETは埋め込み寸法とモデルサイズを最大16倍、平均5.8倍まで減らすことができる。
論文 参考訳(メタデータ) (2023-09-27T09:32:10Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC)は、与えられたテキストパスを理解し、それに基づいて質問に答える機能を明らかにする。
MRCの既存の研究は、Exact Matchのようなメトリクスによって評価されたパフォーマンスを改善するために、大規模なモデルとコーパスに大きく依存している。
モデル機能とデータ特性の深い理解は、適切なトレーニングデータでモデルをフィードするのに役立ちます。
論文 参考訳(メタデータ) (2022-03-05T14:15:59Z) - Swift and Sure: Hardness-aware Contrastive Learning for Low-dimensional
Knowledge Graph Embeddings [20.693275018860287]
我々は、Hardness-Aware Low-dimensional Embedding (HaLE)と呼ばれる新しいKGEトレーニングフレームワークを提案する。
限られた訓練時間において、HaLEはKGEモデルの性能と訓練速度を効果的に向上させることができる。
HaLE訓練モデルは、数分のトレーニング後に高い予測精度を得ることができ、最先端のモデルと比較して競争力がある。
論文 参考訳(メタデータ) (2022-01-03T10:25:10Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
浅層層における機能学習を監督するために深層の特徴を用いるセルフフィーチャー正規化(sfr)を提案する。
まず,局所的な特徴にマッチする一般化l2損失と,チャネル次元においてより集中的に蒸留する多対一の手法を用いる。
論文 参考訳(メタデータ) (2021-03-12T15:29:00Z) - MulDE: Multi-teacher Knowledge Distillation for Low-dimensional
Knowledge Graph Embeddings [22.159452429209463]
知識グラフ埋め込み(KGE)に基づくリンク予測は、知識グラフ(KG)を自動的に構築する新しいトリプルを予測することを目的としている。
最近のKGEモデルは、埋め込み次元を過度に増加させることで、性能の向上を実現している。
我々は,教師として複数の低次元双曲KGEモデルと2つの学生コンポーネントを含む新しい知識蒸留フレームワークであるMulDEを提案する。
論文 参考訳(メタデータ) (2020-10-14T15:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。