論文の概要: Style Alignment based Dynamic Observation Method for UAV-View Geo-localization
- arxiv url: http://arxiv.org/abs/2407.02832v1
- Date: Wed, 3 Jul 2024 06:19:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:25:09.626655
- Title: Style Alignment based Dynamic Observation Method for UAV-View Geo-localization
- Title(参考訳): スタイルアライメントに基づくUAV-Viewジオローカライゼーションのための動的観測法
- Authors: Jie Shao, LingHao Jiang,
- Abstract要約: UAVビューのジオローカライゼーションのためのスタイルアライメントに基づく動的観察法を提案する。
具体的には、ドローンビュー画像の多様な視覚スタイルから衛星画像の統一的な視覚スタイルへ変換するスタイルアライメント戦略を導入する。
動的観察モジュールは、人間の観察習慣を模倣して画像の空間分布を評価するように設計されている。
- 参考スコア(独自算出の注目度): 7.185123213523453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of UAV-view geo-localization is to estimate the localization of a query satellite/drone image by matching it against a reference dataset consisting of drone/satellite images. Though tremendous strides have been made in feature alignment between satellite and drone views, vast differences in both inter and intra-class due to changes in viewpoint, altitude, and lighting remain a huge challenge. In this paper, a style alignment based dynamic observation method for UAV-view geo-localization is proposed to meet the above challenges from two perspectives: visual style transformation and surrounding noise control. Specifically, we introduce a style alignment strategy to transfrom the diverse visual style of drone-view images into a unified satellite images visual style. Then a dynamic observation module is designed to evaluate the spatial distribution of images by mimicking human observation habits. It is featured by the hierarchical attention block (HAB) with a dual-square-ring stream structure, to reduce surrounding noise and geographical deformation. In addition, we propose a deconstruction loss to push away features of different geo-tags and squeeze knowledge from unmatched images by correlation calculation. The experimental results demonstrate the state-of-the-art performance of our model on benchmarked datasets. In particular, when compared to the prior art on University-1652, our results surpass the best of them (FSRA), while only requiring 2x fewer parameters. Code will be released at https://github.com/Xcco1/SA\_DOM
- Abstract(参考訳): UAVビューのジオローカライゼーションの課題は、ドローン/衛星画像からなる参照データセットとマッチングすることで、クエリ衛星/ドローン画像のローカライゼーションを推定することである。
衛星視界とドローン視界の微妙な調整は行われてきたが、視界、高度、照明の変化により、クラス内とクラス内の両方に大きな違いは依然として大きな課題である。
本稿では,UAVビューのジオローカライズのためのスタイルアライメントに基づく動的観測手法を提案し,この課題を視覚的スタイル変換と周囲の騒音制御という2つの視点から解決する。
具体的には、ドローンビュー画像の多様な視覚スタイルから衛星画像の統一的な視覚スタイルへ変換するスタイルアライメント戦略を導入する。
次に、人間の観察習慣を模倣して画像の空間分布を評価する動的観察モジュールを設計する。
二重二乗リングストリーム構造を持つ階層型アテンションブロック(HAB)によって特徴付けられ、周囲のノイズと地理的な変形を低減する。
さらに、異なるジオタグの特徴を排除し、相関計算により未マッチング画像からの知識を絞り込むデコンストラクション損失を提案する。
実験により,ベンチマークデータセット上でのモデルの最先端性能を実証した。
特に、University-1652の先行技術と比較すると、2倍のパラメータしか必要とせず、最も優れたFSRA(FSRA)を上回りました。
コードはhttps://github.com/Xcco1/SA\_DOMでリリースされる
関連論文リスト
- View Distribution Alignment with Progressive Adversarial Learning for
UAV Visual Geo-Localization [10.442998017077795]
無人航空機(UAV)の視覚的ジオローカライゼーションは、異なるビュー、すなわちUAVビューと衛星ビューから取得した同じ地理的ターゲットの画像とマッチングすることを目的としている。
以前の作業では、UAVや衛星が撮影した画像を共有特徴空間にマッピングし、位置に依存した特徴を学習するための分類フレームワークを使用していた。
本稿では,2つのビューの分布アライメントを導入し,共通空間における距離を短縮する。
論文 参考訳(メタデータ) (2024-01-03T06:58:09Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
地上画像のクロスビューマッチングによる測地位置推定の課題をジオレファレンス衛星画像データベースに解決する。
本稿では,新しいトランスフォーマーニューラルネットワークモデルを提案する。
いくつかのベンチマーク・クロスビュー・ジオローカライズ・データセットの実験により、我々のモデルが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-03-28T01:58:03Z) - Cross-View Image Sequence Geo-localization [6.555961698070275]
クロスビュージオローカライゼーションは,クエリ基底画像のGPS位置を推定することを目的としている。
最近のアプローチでは、パノラマ画像を用いて視界範囲を拡大している。
本研究では、フィールド-オフ-ビューの限られた画像のシーケンスで動作する、最初のクロスビューなジオローカライズ手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T19:46:18Z) - CVLNet: Cross-View Semantic Correspondence Learning for Video-based
Camera Localization [89.69214577915959]
本稿では,クロスビューカメラのローカライゼーション問題に対処する。
本稿では、類似性マッチングの前に、問合せカメラの衛星画像に対する相対変位を推定する。
実験は、単一の画像に基づく位置決めよりもビデオベースの位置決めの有効性を実証した。
論文 参考訳(メタデータ) (2022-08-07T07:35:17Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
地上で取得したクエリ画像とジオタグ付き衛星画像の大規模データベースとをマッチングすることにより、地上から衛星画像のジオローカライズの問題に対処する。
我々の新しい手法は、衛星画像のピクセルサイズの精度まで、クエリー画像のきめ細かい位置を達成できる。
論文 参考訳(メタデータ) (2022-03-26T20:10:38Z) - Co-visual pattern augmented generative transformer learning for
automobile geo-localization [12.449657263683337]
クロスビュージオローカライゼーション(CVGL)は、地上カメラの地理的位置を、巨大なジオタグ付き空中画像とマッチングすることによって推定することを目的としている。
CVGLのための相互生成型トランスフォーマー学習(MGTL)という,トランスフォーマーと組み合わせたクロスビュー知識生成技術を用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-17T07:29:02Z) - Multi-view Drone-based Geo-localization via Style and Spatial Alignment [47.95626612936813]
マルチビュー・マルチソース・ジオローカライゼーションは、ドローンビュー画像と衛星ビュー画像とを事前アノテーション付きGPSタグとマッチングすることにより、GPS位置決めの重要な補助的手法として機能する。
パターンを整列させるエレガントな配向に基づく手法を提案し、整列部分特徴を抽出する新しい分岐を導入する。
論文 参考訳(メタデータ) (2020-06-23T15:44:02Z) - Revisiting Street-to-Aerial View Image Geo-localization and Orientation
Estimation [19.239311087570318]
単純なシームズネットワークの性能はアライメント設定に大きく依存していることを示す。
本稿では,一対のクロスビュー画像と未知のアライメント情報との配向/配向を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-05-23T19:52:24Z) - Where am I looking at? Joint Location and Orientation Estimation by
Cross-View Matching [95.64702426906466]
ジオタグ付き空中画像の大規模データベースを考えると、クロスビューなジオローカライゼーションは問題となる。
地上画像と空中画像の向きを知ることは、これらの2つのビュー間のあいまいさを著しく軽減することができる。
局所化時の横方向のアライメントを推定する動的類似マッチングネットワークを設計する。
論文 参考訳(メタデータ) (2020-05-08T05:21:16Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。